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This article studies the problem of testing partial parameter stability in cointegrated regression models. The existing literature
considers a variety of models depending on whether all regression coefficients are allowed to change (pure structural change)
or a subset of the coefficients is held fixed (partial structural change). We first show that the limit distributions of the test
statistics in the latter case are not invariant to changes in the coefficients not being tested; in fact, they diverge as the sample size
increases. To address this issue, we propose a simple two-step procedure to test for partial parameter stability. The first entails
the application of a joint test of stability for all coefficients. Upon a rejection, the second conducts a stability test on the subset
of coefficients of interest while allowing the other coefficients to change at the estimated breakpoints. Its limit distribution
is standard chi-square. The relevant asymptotic theory is provided along with simulations that illustrate the usefulness of the
procedure in finite samples. In an application to US money demand, we show how the proposed approach can be fruitfully
employed to estimate the welfare cost of inflation.
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1. INTRODUCTION

Kejriwal and Perron (2010, KP henceforth) provided a comprehensive treatment of the problem of testing for mul-
tiple structural changes in cointegrated regression models. A number of test statistics were developed, including
tests against a prespecified number of breaks, an unknown number of breaks subject to an upper bound and a
sequential procedure to estimate the number of breaks. Their framework allows for both non-stationary [/(1)] and
stationary [1(0)] regressors as well as serial correlation and conditional heteroskedasticity in the errors. A variety
of models were considered depending on whether all coefficients are allowed to change (pure structural change) or
a subset of coefficients is held fixed (partial structural change). The limiting distributions of the test statistics were
shown to be pivotal under the null hypothesis of no structural change and the relevant critical values tabulated.
Partial structural change models are useful in that they allow for more powerful testing procedures, as illustrated
via simulations by Kuo (1998). In the stationary framework of Bai and Perron (1998), tests of partial parameter
stability remain asymptotically valid even in the presence of breaks in coefficients that are not under test. This
invariance property facilitates the interpretation of the outcome of these tests and serves to identify the source of
instability in the regression model. Such a property, however, no longer holds in the presence of /(1) regressors
so that the partial tests of KP can signal the presence of instability as long as any of the coefficients are unstable,
including those that are not being tested.
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In this article, we first show that the limit distributions of the test statistics in the partial structural change models
are not invariant to changes in the coefficients not being tested. In fact, the test statistics diverge as the sample size
increases. To address this issue, we propose a simple two-step procedure to test for partial parameter stability. The
first step entails the application of a joint test for the stability of all coefficients as in KP. Upon a rejection, the
second step conducts a stability test on the subset of coefficients of interest while allowing the other coefficients to
change at the estimated breakpoints. Its limit distribution is standard chi-square. The relevant asymptotic theory is
provided along with simulation evidence that illustrates the adequacy of the performance in finite samples. In an
application to US money demand, we show how the proposed approach can be fruitfully employed to estimate the
welfare cost of inflation. In particular, we find that the restriction of unitary income elasticity commonly imposed
in the literature is not supported by the data with important implications for the trajectory of welfare cost estimates.

In a related paper, Hsu and Kuan (2001) studied the problem of distinguishing between intercept and slope
breaks in a model with a bounded deterministic trend with a stationary noise component. They showed that the limit
distributions of partial break test statistics are non-pivotal and depend on the magnitude of the coefficient break
(intercept or slope) not under test. A similar result was demonstrated by Hsu (2008) in the context of cointegrated
regressions. In both studies, however, the asymptotic analysis was conducted in a framework in which the break
size shrinks to zero as a function of the sample size at a rate ruling out consistent estimation of the break fractions,
thereby invalidating a two-step testing approach. In contrast, our asymptotic framework allows the break fractions
to be consistently estimated ensuring the large sample validity of the two-step procedure.

This article is structured as follows. Section 2 presents the model and the test statistics. Section 3 details the
proposed two-step procedure to test for partial parameter stability. Monte Carlo simulation results are reported
in Section 4 to assess the performance of the procedure in small samples and Section 5 contains the empirical
application. Section 6 provides brief concluding remarks. All proofs are provided in Appendix A and additional

Monte Carlo simulations are included in Appendix B. As a matter of notation, ‘—’ denotes convergence in proba-

bility, ‘—’ convergence in distribution, and ‘=’ weak convergence under the Skorohod metric. Furthermore, OP(.)
denotes the stochastic order in its strict sense, that is, it is not op(.).

2. MODEL AND TEST STATISTICS

The dependent variable y, is generated according to the linear regression model with m breaks:

V=6t +g,6,tu, t=T_,+1,...T, (1)
forj = 1,...,m+ 1 (m + 1 being the number of regimes), where 7 is the sample size (by convention 7, = 0,
T, =T),z,and z;, are (g, X 1) and (g, x 1) vectors of /(1) regressors, defined by: z, = z;,_; + u’;,, Ty = Tyt ulz’[,
fort=1,...,T, with Zpp and z,, assumed to be fixed constants or 0,,(1) random variables. Equation (1), labeled

Model A, represents a pure structural change model with all regression coefficients including the intercept allowed
to change. The null hypothesis of stability is H,, ,: ¢; = ¢, 65 = 6;, 6,; = 6, for all j. We also consider the following
two partial structural change models, obtained as special cases of (1), by restricting a subset of the parameters to be
fixed across regimes; namely Model B: y, = ¢ +z,6; +2,,6,;+u, and Model C: y, = ¢; +2;,6;+2,,6, +u,. In Model
B, the objective is to test the stability of the coefficients of z,,, that is, H z: 6,; = 6, for all j. Similarly, the null
hypothesis of interest in model C is the stability of the intercept: H,, c: ¢; = ¢ for all j. KP considered two additional
partial break models: one with the null hypothesis of joint stability of (c;, 6,;) while holding 6, fixed across regimes;
the other a special case of Model B, which does not include the regressors z,,. They also considered allowing both
I(1) and 1(0) regressors and a variety of partial break submodels. For brevity, we do not consider these extensions
but note that the two-step procedure we advocate remains valid in these cases though, when the model contains no
break under H,, as in H,, ., the test proposed will be conservative, an issue discussed in more detail in Section 4.
We also focus on the single break case (m = 1) since the extension to multiple breaks is straightforward. KP
proposed sup-Wald test statistics for each of H, 4, H, 3, and H,, .. For a given break fraction = = T, /T, the Wald
statistic for testing H,; is Fy ,(t) = [SSR, — SSRi(r)]/?rl.z('r), where SSR,, and SSR,(7) [i = A, B, C] are the sum of
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squared residuals under the null hypothesis of stability and that under the alternative of model i respectively. The
scaling factor 6'1,2(7) is an estimate of the long-run variance of u,. Following KP, it is computed as
T

6Xr)=T"! 27‘2”2 (b = )) Y U

=i+l

where %, are the residuals from the regression under the null hypothesis and w(-) is a continuous and even
function with [w(.)] < 1, w(0) = 1, and f_°:o w?(x)dx < co. KP proposed using the quadratic spectral ker-
nel with the bandwidth chosen via the rule b,(r) = 1.3221(a,(z)T)"/> advocated by Andrews (1991), where
a,(t) = 4p(x)* /(1 = p(2)*, p(z) = Zthz i(oit,_ (r)/ Z; ﬁf_l(f), with #,(7) the residuals from the regression
under the alternative hypothesis. This is a hybrid non-parametric estimate that employs residuals under both the
null and alternative hypotheses which ensures that the test statistic is adequately sized while bypassing the prob-
lem of non-monotonic power that plagues the Lagrange multiplier type tests (see KP for more details). For some
arbitrary small positive number e, define the set A, = {7 : € < 7 < 1 — ¢}. The sup-Wald test is then defined as
sup Fr () = sup, ¢, Fr (7). Let &, = (u,, uf;, u”)", a vector of dimension n = g, + g, + 1. Our analysis is based
on the following set of assumptions, where heré, and throughout, true values are denoted with a subscript O:
Assumption Al: The vector ¢, satisfies the following multi-variate functional central limit theorem:

T2 Z[m & = B(r), with B(r) = (B,(r), B.(r)', B"(r)') is a n vector Brownian motion with symmetric covariance
matrix

ol Q. Q) 1
Q= of o |¢ = lim T'ES;S,) =S+ A+ N,

Qb QT QY | a4

where S; = Z,T=l§,, T = limy_ T} Z;E(flfr’) and A = lim,_ T~ 12 Z E(é, ;). Also 6® > 0 and
plim,_  T7' Y =lim, T7' Y E[u’] = o>

Qr oP
Assumption A2: The matrix ( “ ) is positive definite.
Qbf Qbb

Z

D, Av,

Assumption A3: Let yo = (c 5};' 8y, j = 1,2, and D, = diag(1,T- 1/21 ,T7V21,). Then y) —y) =

s Oy
where A = (4., /1’ A) is 1ndependent of T and v, > 0 is a scalar satisfying vT -0 and T'?v, - .

Assumptions Al and A2 are standard in the single equation cointegration literature and the same as in Hansen
(1992) and KP. Assumption A2 rules out cointegration among the regressors and implies the presence of a sin-
gle cointegrating vector between the dependent variable and the regressors. This assumption is standard in the
single equation cointegration literature and made in Hansen (1992) and Kejriwal and Perron (2010). It allows us
to derive the limit distribution of the structural change tests by ensuring the invertibility of the limiting second
moment matrix of the /(1) regressors. Note, however, that our analysis allows both /(1) and 1(0) regressors which
corresponds to the case where the regressors are cointegrated, albeit trivially so. Monte Carlo evidence in Section
4 illustrates that the proposed two-step approach is adequately sized with /(1) and I(0) regressors. Furthermore,
in unreported simulations with two /(1) cointegrated regressors, we also confirmed that the two-step approach is
not subject to size distortions. These results are available on request.

Assumption A3 adopts a shrinking shifts asymptotic framework whereby the magnitude of the break shrinks
to zero as T increases with the coefficients of the I(1) regressors shrinking faster than the intercept break (see
Kejriwal and Perron, 2008a). The specified rates ensure that the true break fraction z° = T? /T can be consistently
estimated and allows the construction of confidence intervals for the break date. KP derived the limit null distribu-
tion of the test statistics for models A, B, and C under Assumptions Al and A2 and showed that they are pivotal,
allowing the tabulation of critical values to perform the tests. In particular, the limit distributions pertaining to the
partial break statistics are derived assuming that all parameters are stable under the null hypothesis (i.e., A = 0 in
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222 M. KEJRIWAL, P. PERRON, AND X. YU

Assumption A3), including the subset not under test. The following result shows that the asymptotic size of these
test statistics is not invariant to changes in the subset of parameters not being tested.

Theorem 1. Under Assumptions A1-A3, Qfl = Qlfz = 0and 7° € A,: (a) If 4, # 0 and/or A # 0 and Hy

holds, sup F; () is at least O, (b;' (z")T) if b (z°)vs 2, o, and at least 0,(Tv3), otherwise. (b) If 4, # 0 and/or
A, # 0 and H, - holds, the same results hold for sup F;. (7).

Theorem 1 shows that the sup-Wald statistics have 100% asymptotic size when the instability comes from the
set of parameters not part of the null hypothesis. Hence, the partial break statistics can be expected to suffer from
considerable size distortions in finite samples so that a rejection cannot be attributed to a change in the parameters
under test. Monte Carlo simulations reported in Section 4 confirm the relevance of this result in finite samples.
Note that a similar result holds when the break magnitude is fixed (independent of 7'), namely sup/’; z(z) and
SUpF (7) are at least O, (b} (z°)T).

Theorem 1 is derived under the assumption of strictly exogenous regressors, that is, Q’; = Q’l’z = 0. This is not
necessary and is only imposed to simplify the analysis. Endogenous /(1) regressors can be accounted for using
the dynamic least squares estimator (DOLS) which entails augmenting the regression with leads and lags of the
first-differences of the I(1) regressors (see Saikkonen, 1991) with the number selected using some information
criteria (Kejriwal and Perron, 2008b).

KP considered a general regression framework which allows for both /(1) and 1(0) regressors. It can be shown
that the asymptotic size of the partial break KP statistics is again not invariant to changes in a subset of the
parameters even when testing the stability of the 1(0) coefficients. This result stands in stark contrast to that in
the standard stationary framework where the limit distribution is invariant to the magnitude of local breaks in
parameters not under test (see, e.g., Hsu and Kuan, 2001). The intuition for this invariance is that the omitted
break term has the same order of magnitude as the error component and thus does not induce a change in the
limit distribution. In our framework, the break magnitude can be fixed or shrink with the sample size at a rate
that allows consistent estimation of the break fraction. If the omitted break is on an I(1) regressor, we have the
standard spurious regression problem (the effective error is /(1)). If the omitted break is on an /(0) regressor with
a non-zero mean, then the partial sums of the effective error involve a broken deterministic trend thereby again
leading to a spurious regression type problem (see Perron, 1990). In either scenario, it follows from standard results
that the sum of squared residuals under both the null and the alternative diverge as does their difference. Since the
denominator of the F statistic is of a lower order of magnitude than the numerator, the test statistic diverges. In
contrast, the two-step procedure proposed below remains valid whether one is interested in testing the stability of
the intercept, the /(1) or 1(0) coefficients, or any combination of these three sets of parameters.

3. TWO-STEP PROCEDURE

The preceding analysis shows that the partial break KP statistics cannot be used to evaluate the stability of a subset
of parameters in the presence of changes in the set of parameters that are not under test. Rather, a rejection by these
statistics can only be interpreted as signaling instability in any of the model parameters. Thus, if the objective is not
only to test for overall model stability but also to determine which particular subset of parameters is unstable, an
alternative approach is needed. To achieve this, we propose the following two-step procedure: (1) conduct the test
sup F; 4 () of joint stability of all parameters in regression (1). If the null hypothesis is not rejected at the desired
level of significance, stop the procedure and conclude there is no evidence of instability. Otherwise, obtain the
break date estimate 7 by minimizing the sum of squared residuals from (1) and proceed to the following step; (2)
conduct a F test using chi-squared critical values for the equality of the coefficients across regimes on the subset
of coefficients of interest allowing the others to change at the estimated breakpoint. Upon a rejection, conclude in
favor of a structural change in the subvector of interest, otherwise the stability cannot be rejected.

The asymptotic validity of the two-step procedure follows from (i) the test in the first step is asymptotically
pivotal under the null and consistent against alternatives involving a change in at least one parameter and (ii) the
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break fraction is consistently estimated as long as any of the parameters are subject to a break. The second fact
ensures that the F test in the second step converges to a chi-square distribution under the null hypothesis of no
structural change in the subvector of interest. This basically follows since the estimate of the break fraction is fast
enough to ensure that the limit distribution of the parameter estimate is the same that would prevail if the break
date was known. We thus have the following result where F. (T2 ?(f) denotes the second step test of the null hypothesis
Hy;[i=B,Cl].

Theorem 2. Suppose Assumptions A1-A3 hold, Q{Z = Qi =0 and z° € A,: under the conditions of Theorem
d d
1(), resp., 1(b), (a) Fyy(2) > x2(q,), resp., (b) Fn(8) = x*(1).

Remark 1. In the first step, we could, in principle, replace the pure structural change test by any partial structural
change test, whether or not it involves the regressors whose coefficients are subject to change. We investigate
the benefits of this potential modification via simulations in Section 4 and conclude that using the pure structural
change test is overall preferable.

Using Theorems 1 and 2, we can show that the asymptotic size of the two-step procedure cannot exceed a,
where « is the level of significance used in each step. This is stated in Corollary 1.

Corollary 1. Let cv,(a) and cv,(a) denote the level a asymptotic critical values of sup F;.,(z) and F(T2 ?(f),
respectively (i = B, C). Then, under H,;, i € {B, C}, we have

lim P [{Sup Fra(@) > evy(@} n {Ffj(f) > cv,.(a)}] <a

Remark 2. The two-step procedure can be applied to a model with multiple breaks where each break affects
only a subset of the parameters. Such a model can be represented as a restricted version of the pure structural
change model (1). Given the consistency of the first step test as well as the estimated break fractions in the presence
of a change in at least one of the parameters, the second step can be used to determine the break(s) that affect a
particular parameter of interest by testing the constancy of this parameter across any two adjacent regimes.

4. MONTE CARLO EVIDENCE

This section presents the results of Monte Carlo experiments designed to assess the finite sample adequacy
of the theoretical results. These will show that (i) the KP partial break test statistics are subject to substantial
over-rejections when the data generating process (DGP) involves a change in the subset of parameters outside
those pertaining to the null hypothesis, and (ii) the two-step procedure proposed has good size and considerable
power in detecting deviations from stability. The design is similar to that in Kuo (1998). For the errors u,, we con-

sider three different cases: (a) (i.i.d. errors) u, o N(0,1); (b) (AR(1) errors) u, = 0.5u,_, +e,, e, b N0, 1); (c)

(MA(1) errors) u, = e, — 0.5¢,_,, e, g5 N (0, 1). The trimming e is set at 15%. Each step of the two-step proce-
dure as well as the one-step partial KP test uses a 5% nominal level test. The number of replications throughout is
100,000. -

In the first set of simulations, the dependent variable y, is generated by: y, = ¢, + 6,7, + u,; 7, = 2,_; +u,, u, £
N(0,1). Four DGPs are considered: DGP-1: ¢, = 1, §, = 1 for all r; DGP-2: ¢, = 1 forall ¢, 6, = 1 if t < [°T]
and 1 + A, otherwise; DGP-3: ¢, = 1if t < [t°T] and 1 + A, otherwise, 6, = 1 for all #; DGP-4: ¢, = 5, = 1 if
t < [¢°T1, otherwise, ¢, = 1 + A_ and §, = 1 + A;. The breakpoint is set at 7° = 0.5. The regressor z, is assumed
to be strictly exogenous, that is, u,, and u, are independent for all # and s. We compare the size and power of the
one step partial break KP statistics and the two-step procedure for 7' € {120,240}. The break magnitudes are set
atA, =1,A; =04.
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Table I (Panels A and B) presents the results. Panel A reports the rejection frequencies when testing for a break
in slope (6) so that DGPs 1 and 3 pertain to size and DGPs 2 and 4 to power. The power results are size-unadjusted.
While the partial break KP test has adequate size for DGP-1, size distortions are evident for DGP-3, irrespective
of the error structure, which increase with T, consistent with the result in Theorem 1. In contrast, the proposed
two-step procedure exhibits much better size control across T and error structures, the exact size never exceeding
8%. A seemingly counterintuitive feature of the two-step approach is that for DGP-3b (AR(1) errors), the empir-
ical size need not approach the nominal size monotonically as 7 increases. We investigate this issue in detail in
Appendix B. Panel B reports the rejection frequencies when testing the stability of the intercept c. Here DGPs 1
and 2 correspond to size and DGPs 3 and 4 to power. Similar to the results in Panel A, the two-step test has ade-
quate size (though conservative) in all cases, while the one-step KP test is subject to substantial size distortions
under DGP-2 (a change in the slope parameter). It is instructive to look at the cases of DGP-1 and DGP-2 in more
details. DGP-1 involves no breaks. Hence, the KP test has a 5% asymptotic size and should have highest power,
while the two-step procedure is asymptotically conservative. Under the null, for the 5% of the cases in which a
rejection does occur, the second step rejects with some probability less than one, given that the estimated break
date from the first step is random, so that the limit distribution in Kejriwal and Perron (2008a) does not apply.
Still, the power of the two-step procedure remains adequate. By definition, it is less than that of the first step KP
test (subject to some simulation errors), but the reduction in power is quite minor; the biggest discrepancy is for
AR(1) errors with T = 120. Notwithstanding its two-step nature, our recommended procedure retains respectable
power that increases noticeably with 7.

In a second set of simulations, we also consider DGPs involving both /(1) and /(0) regressors given by: y, =

U, + Bx, + 6,2, + u,, where x, N, z, =2z, +u, and u,, %" N(0, 1). Four DGPs are considered: DGP-5:
u, =p =1,8 =1ift < [¢°T], otherwise §, = 1.4; DGP-6: u, = 1, f, = §, = 1,if t < [T, otherwise f, = 3,
8, =14;DGP-7: , =6, = 1 and y, = 1 if ¢t < [z°T], otherwise y, = 2; DGP-8: for t < [t°T], u, = B, = 6, = 1,
and for t > [7°T], u, =2, p, = 3,6, = 1.4. For each DGP, we are interested in testing the stability of the /(0)
coefficient f,. Thus DGPs 5 and 7 correspond to size while DGPs 6 and 8 correspond to power. The same three
error structures are allowed for u, as described above. The results are presented in Panel C of Table I. For DGPs
5 and 7, the size of the two-step procedure is near the nominal 5% level, except when the sample size is small
with AR(1) errors, though the distortions reduce considerably as 7 increases. For DGPs 6 and 8, the results show
substantial power. The standard KP test is again rejecting far too often, indicating its non-robustness even when
testing the stability of /(0) coefficients.

The final set of simulations considers DGPs with a larger number of regressors. These simulations are motivated
by the observation that since the first step of the two-step procedure entails applying a structural change test on all
model parameters in the first step, its power may be low with a large number of regressors if only a few parameters
change.! To investigate this possibility, two alternative designs are considered. The first appends DGPs 1-4 with
two I(1) regressors generated as independent random walks (and independent of the other variables) with unit
coefficients that remain stable throughout the sample. We label these DGPs 1’—4’ . The second design appends
DGPs 5-8 with one /(1) regressor generated as a random walk and one /(0) regressor generated as i.i.d. N(0,1),
the variables being independent of each other as well as the other variables. Each of the two variables has unit
coefficients that remain stable throughout the sample. We label these DGPs 5'-8'.

In addition to the proposed two-step procedure, we also consider here a modified procedure that replaces the
pure structural change test in the first step with a partial structural change test on the coefficient of interest. As
shown in Theorem 1, the partial test has unit asymptotic power under the alternative hypothesis that at least one of
the parameters change. The first step and final rejection frequencies of the modified procedure are denoted by TS’i o
and T$' respectively, while those of the proposed two-step procedure are denoted by 7S, and 7S respectively. The
objective is to examine the extent of power loss involved by conducting a pure structural change in the first step
as opposed to a partial structural change test on the coefficient of interest. A 5% significance level is used in each
step of the two procedures.

'We thank an anonymous referee for pointing this out.
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Table I. Size and power of the one-step partial KP and two-step (TS) tests (x100), 5% nominal level

T =120 T =240

DGP 1 2 3 4 1 2 3 4

Panel A: testing for a partial change in the coefficient of an /(1) regressor (6,)

a (i.i.d. errors) KP 3.66 98.83 50.92 93.44 4.28 100 73.93 99.82
TS 2.29 97.06 8.02 97.39 2.63 100 7.05 100

b (AR(1) errors) KpP 2.80 75.90 10.98 66.83 3.67 98.78 27.21 95.20
T8 1.42 59.27 3.96 61.27 1.79 97.10 6.86 97.48

¢ (MA(1) errors) KP 2.70 99.92 65.80 96.82 1.88 100 85.26 99.97
T8 3.92 99.70 4.77 99.74 2.02 100 297 100

Panel B: Testing for a partial change in intercept (c,) with an /(1) regressor

a (i.i.d. errors) KP 4.43 81.31 84.72 84.88 4.79 92.64 97.12 93.56
T8 2.31 8.40 59.94 66.24 2.64 6.21 81.53 82.19

b (AR(1) errors) KP 4.27 44.74 28.86 50.09 4.87 71.55 59.32 73.90
TS 1.70 8.95 11.89 27.95 2.12 9.34 33.49 52.35

¢ (MAC(1) errors) KpP 1.10 88.69 97.27 91.44 1.08 97.74 99.94 98.09
T8 2.98 3.88 81.33 82.66 1.63 2.53 94.76 94.20
DGP 5 6 7 8 5 6 7 8

Panel C: Testing for a partial change in the coefficient of an /(0) regressor (f,)

a (i.i.d. errors) KP 47.25 95.36 33.82 97.92 81.10 97.11 64.79 98.78
TS 6.42 99.86 5.07 99.88 6.17 100 6.33 100

b (AR(1) errors) KP 38.51 93.27 20.31 97.16 72.86 96.8 44.14 98.08
T8 1.80 68.5 0.33 70.24 3.89 99.67 1.61 99.66

¢ (MA(1) errors) KP 48.32 95.73 33.7 98.24 82.59 97.53 62.76 98.84
T8 6.46 99.95 6.07 99.95 5.61 100 5.85 100

The results are reported in Table II. The performance of the proposed and modified procedures in terms of finite
sample size is broadly similar to each other and adequate in both cases. In terms of power, the modified procedure
offers discernible improvements only in the case of AR(1) errors when the sample size is small (7 = 120). In
other cases, the improvements are marginal at best. On the other hand, while the proposed approach is simple to
implement in practice, the modified approach is computationally costly —with k parameters, the proposed approach
only requires k + 1 tests while the modified approach requires 2k tests. This feature also makes the modified
approach more susceptible to multiple testing issues. Thus, the proposed approach can serve as a simple, yet useful
addition to the practitioner’s toolkit when testing for partial structural change.

Appendix B contains additional Monte Carlo results that explore the behavior of empirical size as a function
of sample size/break magnitude. These simulations are motivated by the fact that the size distortions incurred by
the two-step procedure for DGPs 2b—3b in Table I do not decrease as the sample size increases. We show that the
proposed procedure remains adequate as the sample size/break magnitude varies and provide a discussion for the
observed evolution of the empirical size. See Appendix B for details.

5. EMPIRICAL APPLICATION

This section applies the proposed procedure to study the stability of US money demand and the associated issue
of estimating the welfare cost of inflation. A standard approach to measuring the welfare cost of inflation is due
to Bailey (1956), who suggests that such costs can be measured as the area underlying the inverse money demand
function that represents the consumer surplus that could be realized from a reduction in the nominal interest rate
from a positive level to a near-zero level. The rationale is that if real money balances are treated as a consump-
tion good due to its ability to provide liquidity, inflation can be viewed as a tax on real balances through its
effect on nominal interest rates and hence the opportunity cost of holding real balances. In such a framework, the
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Table II. Size and power of two-step (7S and TS") tests (x100), 5% nominal level, larger number of regressors

T =120 T =240

DGP g 2 3 4 g 2 3 4

Panel A: Testing for a partial change in the coefficient of an /(1) regressor (5, )

a (i.i.d. errors) TS, 4.51 93.53 35.25 94.56 4.59 99.97 70.1 100
s 2.25 89.83 6.81 90.91 2.14 99.95 7.52 99.99
TS;H 5.29 97.53 30.8 94.97 5.73 99.99 53.15 99.92
TS' 2.38 93.17 5.39 91.25 2.38 99.97 5.83 99.91

b (AR(1) errors) TS,,, 2.32 44.94 5.76 47.64 2.83 92.26 13.76 92.39
s 1.13 38.32 2.1 39.99 1.22 90.89 3.67 91
TSQS, 5.15 72.98 9.97 68.76 5.57 98.16 17.57 96.09
Ts' 2.18 60.09 3.21 56.62 2.32 96.27 4.23 94.34

¢ (MA(1) errors) TS, 18.36 98.77 62.38 99.04 8.96 100 95 100
78 12.09 97.9 11.05 98.21 5.53 100 5.8 100
TS';” 5.72 99.83 45.72 98.34 347 100 71.53 100
TS' 4.00 98.87 7.36 97.47 2.08 100 448 100

Panel B: Testing for a partial change in intercept (c,) with an /(1) regressor

a (i.i.d. errors) TS,,, 4.53 93.78 34.83 94.73 5.12 99.99 69.07 100
s 1.95 9.64 16.8 29.7 1.95 6.96 37.22 42.98
TSQS, 5.01 77.05 54.98 80.06 5.92 93.19 82.79 94.47
Ts' 1.98 7.64 24.07 24.02 2.11 6.52 41.46 39.99

b (AR(1) errors) TS, 2.55 46.15 5.25 46.9 2.78 92.53 12.92 92.37
78 1.33 8.26 2.82 11.7 1.29 10.73 6.89 22.35
TS';” 5.53 41.47 15.96 44.63 5.79 68.69 31.76 70.86
Ts' 2.54 6.55 7.32 10.43 2.35 7.69 13.94 16.34

¢ (MA(1) errors) TS, 19.43 98.53 62.68 98.93 8.74 100 95.3 100
s 10.61 8.81 35.11 43.87 4.64 4.62 66.73 66.33
TS;H 3.51 85.15 82.53 87.62 2.14 97.9 98.91 98.1
TS 1.54 7.35 42.6 38.25 0.9 4.48 68.36 64.73
DGP 5 6 7 8 5 6 7 8’

Panel C: Testing for a partial change in the coefficient of an /(0) regressor (f,)

a (i.i.d. errors) TS, 81.03 99.83 36.09 99.91 99.44 100 72.09 100
s 6.82 99.83 4.66 99.91 6.39 100 6.08 100
TS;H 45.65 98.4 244 99.3 79.64 98.78 47.25 99.56
TS' 4.45 98.4 3.88 99.3 5.27 98.78 4.39 99.56

b (AR(1) errors) TS\, 10.06 69.09 2.59 68.6 36.72 99.23 5.75 99.22
s 0.93 69.09 0.42 68.6 2.56 99.23 0.95 99.22
TSQS, 37.91 97.47 19.99 99.12 72.75 98.93 37.24 99.41
Ts' 3.86 97.47 3.11 99.12 4.81 98.93 4.03 99.41

¢ (MA(1) errors) TS, 82.55 99.95 40.47 99.92 99.67 100 83.49 100
78 6.75 99.95 5.74 99.92 6.15 100 6.61 100
TS';” 42.97 98.32 21.92 99.41 79.3 98.88 43.65 99.51
Ts' 4.13 98.32 4.45 99.41 5.13 98.88 4.21 99.51

specification of the money demand function naturally plays a crucial role in the estimation of the welfare cost of
inflation.

Empirical work in this context has typically relied on two alternative functional forms for the money demand
function: the log—log form (Meltzer, 1963) and the semi-log form (Cagan, 1956). The log—log form allowing for
time-varying parameters is specified as follows:

M Y
1n<—) =a +cln<—) +b,Inr, +u, 2)
P , t t P , t t t
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where M /P denotes real money balances, Y /P denotes real income and r denotes the nominal interest rate. The
parameters ¢, and b, measure the time-varying income and interest elasticities of money demand respectively. The
semi-log form is specified as follows:

M Y
ln<F>t=at+ctln<F>t+b[r,+u,. 3)

In addition to (2) and (3), the following specifications that impose a unitary elasticity of money demand are
frequently estimated, where m denotes the money-income ratio M/Y:

Inm, =a,+b,Inr, + u,. 4)

Inm, = a, + b,r, + u,. 5)

The application of Bailey’s method to (2) yields the following measure of the welfare cost at a positive interest
rate r (see, e.g., Calza and Zaghini, 2010):

c,—1
— —=b
w(r, 1) = exp (%)(%) — it (6)
while the expression for the semi-log function (3) takes the form:

c—1
w(r,t) = eX_p[ia,) <%> [1—(1—=b,r)exp(b,r)]. @)

Equations (6) and (7) are typically evaluated at the average value of (Y/P) over the sample. The corresponding
expressions for the restricted specifications (4) and (5) are given as follows:

— o l+b,
w(r,t) = exp (a,)1 " b;r . ®)
exp (a,)
w(r, 1) = = [1 = (1 —=b,r)exp(b,r)]. ©))

t

A wide range of welfare cost estimates is available in the literature depending on whether a log—log or semi-log
form is estimated, whether instability is allowed for, as well as whether a unitary income elasticity is imposed.
We do not undertake a comprehensive review of this literature here but rather focus on the studies that are more
closely related to ours (see Mogliani and Urga, 2018; Miller et al., 2019, for further references and discussions).
Lucas (2000) argues in favor of a log—log form due to its consistency with inventory-theoretic money demand
models, while Ireland (2009) advocates the use of a semi-log specification for post-1980 data due to a shift in the
monetary policy regime towards low interest rates. While the former study finds a welfare cost of 10% inflation
to be slightly less than 1% of GDP, the latter reports a much lower estimate of about 0.25%. The estimates in
both studies are obtained from specifications that assume a unit income elasticity of money demand. Mogliani and
Urga (2018) investigate the stability of the log—log form of the money demand function using the joint KP test but
again imposes a unitary income elasticity. They find evidence of two breaks (1945 and 1976) and a welfare cost of
about 0.1% in the post-1976 period compared to 0.8% over 1945-1975. Miller et al. (2019) adopt the time-varying
cointegration framework developed in Bierens and Martins (2010) where the coefficients are modeled as smooth
functions of time. They find that the unitary income elasticity restriction is rejected for the semi-log form but not
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