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This article studies the problem of testing partial parameter stability in cointegrated regression models. The existing literature
considers a variety of models depending on whether all regression coefficients are allowed to change (pure structural change)
or a subset of the coefficients is held fixed (partial structural change). We first show that the limit distributions of the test
statistics in the latter case are not invariant to changes in the coefficients not being tested; in fact, they diverge as the sample size
increases. To address this issue, we propose a simple two-step procedure to test for partial parameter stability. The first entails
the application of a joint test of stability for all coefficients. Upon a rejection, the second conducts a stability test on the subset
of coefficients of interest while allowing the other coefficients to change at the estimated breakpoints. Its limit distribution
is standard chi-square. The relevant asymptotic theory is provided along with simulations that illustrate the usefulness of the
procedure in finite samples. In an application to US money demand, we show how the proposed approach can be fruitfully
employed to estimate the welfare cost of inflation.
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1. INTRODUCTION

Kejriwal and Perron (2010, KP henceforth) provided a comprehensive treatment of the problem of testing for mul-
tiple structural changes in cointegrated regression models. A number of test statistics were developed, including
tests against a prespecified number of breaks, an unknown number of breaks subject to an upper bound and a
sequential procedure to estimate the number of breaks. Their framework allows for both non-stationary [I(1)] and
stationary [I(0)] regressors as well as serial correlation and conditional heteroskedasticity in the errors. A variety
of models were considered depending on whether all coefficients are allowed to change (pure structural change) or
a subset of coefficients is held fixed (partial structural change). The limiting distributions of the test statistics were
shown to be pivotal under the null hypothesis of no structural change and the relevant critical values tabulated.
Partial structural change models are useful in that they allow for more powerful testing procedures, as illustrated
via simulations by Kuo (1998). In the stationary framework of Bai and Perron (1998), tests of partial parameter
stability remain asymptotically valid even in the presence of breaks in coefficients that are not under test. This
invariance property facilitates the interpretation of the outcome of these tests and serves to identify the source of
instability in the regression model. Such a property, however, no longer holds in the presence of I(1) regressors
so that the partial tests of KP can signal the presence of instability as long as any of the coefficients are unstable,
including those that are not being tested.
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220 M. KEJRIWAL, P. PERRON, AND X. YU

In this article, we first show that the limit distributions of the test statistics in the partial structural change models
are not invariant to changes in the coefficients not being tested. In fact, the test statistics diverge as the sample size
increases. To address this issue, we propose a simple two-step procedure to test for partial parameter stability. The
first step entails the application of a joint test for the stability of all coefficients as in KP. Upon a rejection, the
second step conducts a stability test on the subset of coefficients of interest while allowing the other coefficients to
change at the estimated breakpoints. Its limit distribution is standard chi-square. The relevant asymptotic theory is
provided along with simulation evidence that illustrates the adequacy of the performance in finite samples. In an
application to US money demand, we show how the proposed approach can be fruitfully employed to estimate the
welfare cost of inflation. In particular, we find that the restriction of unitary income elasticity commonly imposed
in the literature is not supported by the data with important implications for the trajectory of welfare cost estimates.

In a related paper, Hsu and Kuan (2001) studied the problem of distinguishing between intercept and slope
breaks in a model with a bounded deterministic trend with a stationary noise component. They showed that the limit
distributions of partial break test statistics are non-pivotal and depend on the magnitude of the coefficient break
(intercept or slope) not under test. A similar result was demonstrated by Hsu (2008) in the context of cointegrated
regressions. In both studies, however, the asymptotic analysis was conducted in a framework in which the break
size shrinks to zero as a function of the sample size at a rate ruling out consistent estimation of the break fractions,
thereby invalidating a two-step testing approach. In contrast, our asymptotic framework allows the break fractions
to be consistently estimated ensuring the large sample validity of the two-step procedure.

This article is structured as follows. Section 2 presents the model and the test statistics. Section 3 details the
proposed two-step procedure to test for partial parameter stability. Monte Carlo simulation results are reported
in Section 4 to assess the performance of the procedure in small samples and Section 5 contains the empirical
application. Section 6 provides brief concluding remarks. All proofs are provided in Appendix A and additional

Monte Carlo simulations are included in Appendix B. As a matter of notation, ‘
p
→’ denotes convergence in proba-

bility, ‘
d
→’ convergence in distribution, and ‘⇒’ weak convergence under the Skorohod metric. Furthermore, Op(.)

denotes the stochastic order in its strict sense, that is, it is not op(.).

2. MODEL AND TEST STATISTICS

The dependent variable yt is generated according to the linear regression model with m breaks:

yt = cj + z′ft𝛿fj + z′bt𝛿bj + ut, t = Tj−1 + 1,… ,Tj (1)

for j = 1,… ,m + 1 (m + 1 being the number of regimes), where T is the sample size (by convention T0 = 0,
Tm+1 = T), zft and zbt are (qf ×1) and (qb×1) vectors of I(1) regressors, defined by: zft = zf ,t−1+uf

zt, zbt = zb,t−1+ub
zt,

for t = 1,… ,T , with zf 0 and zb0 assumed to be fixed constants or Op(1) random variables. Equation (1), labeled
Model A, represents a pure structural change model with all regression coefficients including the intercept allowed
to change. The null hypothesis of stability is H0,A: cj = c, 𝛿fj = 𝛿f , 𝛿bj = 𝛿b for all j. We also consider the following
two partial structural change models, obtained as special cases of (1), by restricting a subset of the parameters to be
fixed across regimes; namely Model B: yt = c+ z′ft𝛿f + z′bt𝛿bj +ut and Model C: yt = cj + z′ft𝛿f + z′bt𝛿b +ut. In Model
B, the objective is to test the stability of the coefficients of zbt, that is, H0,B: 𝛿bj = 𝛿b for all j. Similarly, the null
hypothesis of interest in model C is the stability of the intercept: H0,C: cj = c for all j. KP considered two additional
partial break models: one with the null hypothesis of joint stability of (cj, 𝛿bj)while holding 𝛿fj fixed across regimes;
the other a special case of Model B, which does not include the regressors zft. They also considered allowing both
I(1) and I(0) regressors and a variety of partial break submodels. For brevity, we do not consider these extensions
but note that the two-step procedure we advocate remains valid in these cases though, when the model contains no
break under H0, as in H0,C, the test proposed will be conservative, an issue discussed in more detail in Section 4.
We also focus on the single break case (m = 1) since the extension to multiple breaks is straightforward. KP
proposed sup-Wald test statistics for each of H0,A, H0,B, and H0,C. For a given break fraction 𝜏 = T1∕T , the Wald
statistic for testing H0,i is FT ,i(𝜏) = [SSR0 − SSRi(𝜏)]∕𝜎̂2

i (𝜏), where SSR0 and SSRi(𝜏) [i = A,B,C] are the sum of

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
DOI: 10.1111/jtsa.12609

 14679892, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12609 by Fudan U

niversity, W
iley O

nline L
ibrary on [24/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TESTING PARTIAL PARAMETER STABILITY 221

squared residuals under the null hypothesis of stability and that under the alternative of model i respectively. The
scaling factor 𝜎̂2

i (𝜏) is an estimate of the long-run variance of ut. Following KP, it is computed as

𝜎̂2
i (𝜏) = T−1

T∑
t=1

ũ2
t + 2

T−1∑
j=1

w

(
j

bT (𝜏)

)
T−1

T∑
t=j+1

ũtũt−j,

where ũt are the residuals from the regression under the null hypothesis and w(⋅) is a continuous and even
function with |w(.)| ≤ 1, w(0) = 1, and ∫ ∞

−∞ w2(x)dx < ∞. KP proposed using the quadratic spectral ker-
nel with the bandwidth chosen via the rule bT (𝜏) = 1.3221(â2(𝜏)T)1∕5 advocated by Andrews (1991), where
â2(𝜏) = 4𝜌̂(𝜏)2∕(1 − 𝜌̂(𝜏))4, 𝜌̂(𝜏) =

∑T
t=2 ût(𝜏)ût−1(𝜏)∕

∑T
t=2 û2

t−1(𝜏), with ût(𝜏) the residuals from the regression
under the alternative hypothesis. This is a hybrid non-parametric estimate that employs residuals under both the
null and alternative hypotheses which ensures that the test statistic is adequately sized while bypassing the prob-
lem of non-monotonic power that plagues the Lagrange multiplier type tests (see KP for more details). For some
arbitrary small positive number 𝜖, define the set Λ𝜖 = {𝜏 ∶ 𝜖 ≤ 𝜏 ≤ 1 − 𝜖}. The sup-Wald test is then defined as
sup FT ,i(𝜏) = sup𝜏 ∈Λ𝜖

FT ,i(𝜏) . Let 𝜉t = (ut, uf ′
zt , ub′

zt )
′ , a vector of dimension n = qf + qb + 1. Our analysis is based

on the following set of assumptions, where here, and throughout, true values are denoted with a subscript 0:
Assumption A1: The vector 𝜉t satisfies the following multi-variate functional central limit theorem:
T−1∕2 ∑[Tr]

t=1 𝜉t ⇒ B(r), with B(r) = (B1(r),Bf
z(r)

′,Bb
z (r)

′)′ is a n vector Brownian motion with symmetric covariance
matrix

Ω =
⎛⎜⎜⎜⎝
𝜎2 Ωf

1z Ωb
1z

Ωf
z1 Ωff

zz Ωfb
zz

Ωb
z1 Ωbf

zz Ωbb
zz

⎞⎟⎟⎟⎠
1

qf

qb

= lim
T→∞

T−1E(STS′
T ) = Σ + Λ + Λ′,

where ST =
∑T

t=1 𝜉t, Σ = limT→∞ T−1 ∑T
t=1 E(𝜉t𝜉

′
t ) and Λ = limT→∞ T−1 ∑T−1

j=1

∑T−j
t=1 E(𝜉t𝜉

′
t+j). Also 𝜎2 > 0 and

p limT→∞ T−1 ∑T
t=1 u2

t = limT→∞ T−1 ∑T
t=1 E[u2

t ] ≡ 𝜎2
u .

Assumption A2: The matrix

(
Ωff

zz Ωfb
zz

Ωbf
zz Ωbb

zz

)
is positive definite.

Assumption A3: Let 𝛾0
j = (c0

j , 𝛿
0′
fj , 𝛿

0′
bj )

′
, j = 1, 2, and DT = diag(1,T−1∕2Iqf

,T−1∕2Iqb
). Then 𝛾0

2 − 𝛾0
1 = DT𝜆vT

where 𝜆 = (𝜆c, 𝜆
′
f , 𝜆

′
b)

′ is independent of T and vT > 0 is a scalar satisfying vT → 0 and T1∕2vT → ∞.
Assumptions A1 and A2 are standard in the single equation cointegration literature and the same as in Hansen

(1992) and KP. Assumption A2 rules out cointegration among the regressors and implies the presence of a sin-
gle cointegrating vector between the dependent variable and the regressors. This assumption is standard in the
single equation cointegration literature and made in Hansen (1992) and Kejriwal and Perron (2010). It allows us
to derive the limit distribution of the structural change tests by ensuring the invertibility of the limiting second
moment matrix of the I(1) regressors. Note, however, that our analysis allows both I(1) and I(0) regressors which
corresponds to the case where the regressors are cointegrated, albeit trivially so. Monte Carlo evidence in Section
4 illustrates that the proposed two-step approach is adequately sized with I(1) and I(0) regressors. Furthermore,
in unreported simulations with two I(1) cointegrated regressors, we also confirmed that the two-step approach is
not subject to size distortions. These results are available on request.

Assumption A3 adopts a shrinking shifts asymptotic framework whereby the magnitude of the break shrinks
to zero as T increases with the coefficients of the I(1) regressors shrinking faster than the intercept break (see
Kejriwal and Perron, 2008a). The specified rates ensure that the true break fraction 𝜏0 = T0

1∕T can be consistently
estimated and allows the construction of confidence intervals for the break date. KP derived the limit null distribu-
tion of the test statistics for models A, B, and C under Assumptions A1 and A2 and showed that they are pivotal,
allowing the tabulation of critical values to perform the tests. In particular, the limit distributions pertaining to the
partial break statistics are derived assuming that all parameters are stable under the null hypothesis (i.e., 𝜆 = 0 in

J. Time Ser. Anal. 43: 219–237 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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222 M. KEJRIWAL, P. PERRON, AND X. YU

Assumption A3), including the subset not under test. The following result shows that the asymptotic size of these
test statistics is not invariant to changes in the subset of parameters not being tested.

Theorem 1. Under Assumptions A1–A3, Ωf
1z = Ωb

1z = 0 and 𝜏0 ∈ Λ𝜖: (a) If 𝜆c ≠ 0 and/or 𝜆f ≠ 0 and H0,B

holds, sup FT ,B(𝜏) is at least Op(b−1
T (𝜏0)T) if bT (𝜏0)𝜈2

T

p
→ ∞, and at least Op(T𝜈2

T ), otherwise. (b) If 𝜆f ≠ 0 and/or
𝜆b ≠ 0 and H0,C holds, the same results hold for sup FT ,C(𝜏).

Theorem 1 shows that the sup-Wald statistics have 100% asymptotic size when the instability comes from the
set of parameters not part of the null hypothesis. Hence, the partial break statistics can be expected to suffer from
considerable size distortions in finite samples so that a rejection cannot be attributed to a change in the parameters
under test. Monte Carlo simulations reported in Section 4 confirm the relevance of this result in finite samples.
Note that a similar result holds when the break magnitude is fixed (independent of T), namely supFT ,B(𝜏) and
supFT ,C(𝜏) are at least Op(b−1

T (𝜏0)T).
Theorem 1 is derived under the assumption of strictly exogenous regressors, that is, Ωf

1z = Ωb
1z = 0. This is not

necessary and is only imposed to simplify the analysis. Endogenous I(1) regressors can be accounted for using
the dynamic least squares estimator (DOLS) which entails augmenting the regression with leads and lags of the
first-differences of the I(1) regressors (see Saikkonen, 1991) with the number selected using some information
criteria (Kejriwal and Perron, 2008b).

KP considered a general regression framework which allows for both I(1) and I(0) regressors. It can be shown
that the asymptotic size of the partial break KP statistics is again not invariant to changes in a subset of the
parameters even when testing the stability of the I(0) coefficients. This result stands in stark contrast to that in
the standard stationary framework where the limit distribution is invariant to the magnitude of local breaks in
parameters not under test (see, e.g., Hsu and Kuan, 2001). The intuition for this invariance is that the omitted
break term has the same order of magnitude as the error component and thus does not induce a change in the
limit distribution. In our framework, the break magnitude can be fixed or shrink with the sample size at a rate
that allows consistent estimation of the break fraction. If the omitted break is on an I(1) regressor, we have the
standard spurious regression problem (the effective error is I(1)). If the omitted break is on an I(0) regressor with
a non-zero mean, then the partial sums of the effective error involve a broken deterministic trend thereby again
leading to a spurious regression type problem (see Perron, 1990). In either scenario, it follows from standard results
that the sum of squared residuals under both the null and the alternative diverge as does their difference. Since the
denominator of the F statistic is of a lower order of magnitude than the numerator, the test statistic diverges. In
contrast, the two-step procedure proposed below remains valid whether one is interested in testing the stability of
the intercept, the I(1) or I(0) coefficients, or any combination of these three sets of parameters.

3. TWO-STEP PROCEDURE

The preceding analysis shows that the partial break KP statistics cannot be used to evaluate the stability of a subset
of parameters in the presence of changes in the set of parameters that are not under test. Rather, a rejection by these
statistics can only be interpreted as signaling instability in any of the model parameters. Thus, if the objective is not
only to test for overall model stability but also to determine which particular subset of parameters is unstable, an
alternative approach is needed. To achieve this, we propose the following two-step procedure: (1) conduct the test
sup FT ,A(𝜏) of joint stability of all parameters in regression (1). If the null hypothesis is not rejected at the desired
level of significance, stop the procedure and conclude there is no evidence of instability. Otherwise, obtain the
break date estimate 𝜏 by minimizing the sum of squared residuals from (1) and proceed to the following step; (2)
conduct a F test using chi-squared critical values for the equality of the coefficients across regimes on the subset
of coefficients of interest allowing the others to change at the estimated breakpoint. Upon a rejection, conclude in
favor of a structural change in the subvector of interest, otherwise the stability cannot be rejected.

The asymptotic validity of the two-step procedure follows from (i) the test in the first step is asymptotically
pivotal under the null and consistent against alternatives involving a change in at least one parameter and (ii) the

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
DOI: 10.1111/jtsa.12609
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TESTING PARTIAL PARAMETER STABILITY 223

break fraction is consistently estimated as long as any of the parameters are subject to a break. The second fact
ensures that the F test in the second step converges to a chi-square distribution under the null hypothesis of no
structural change in the subvector of interest. This basically follows since the estimate of the break fraction is fast
enough to ensure that the limit distribution of the parameter estimate is the same that would prevail if the break
date was known. We thus have the following result where F(2)

T ,i(𝜏) denotes the second step test of the null hypothesis
H0,i [i = B,C].

Theorem 2. Suppose Assumptions A1–A3 hold, Ωf
1z = Ωb

1z = 0 and 𝜏0 ∈ Λ𝜖: under the conditions of Theorem

1(a), resp., 1(b), (a) F(2)
T ,B(𝜏)

d
→ 𝜒2(qb), resp., (b) F(2)

T ,C(𝜏)
d
→ 𝜒2(1).

Remark 1. In the first step, we could, in principle, replace the pure structural change test by any partial structural
change test, whether or not it involves the regressors whose coefficients are subject to change. We investigate
the benefits of this potential modification via simulations in Section 4 and conclude that using the pure structural
change test is overall preferable.

Using Theorems 1 and 2, we can show that the asymptotic size of the two-step procedure cannot exceed 𝛼,
where 𝛼 is the level of significance used in each step. This is stated in Corollary 1.

Corollary 1. Let cvA(𝛼) and cvi(𝛼) denote the level 𝛼 asymptotic critical values of sup FT ,A(𝜏) and F(2)
T ,i(𝜏),

respectively (i = B,C). Then, under H0,i, i ∈ {B,C}, we have

lim
T→∞

P
[{

sup FT ,A(𝜏) > cvA(𝛼)
}
∩
{

F(2)
T ,i(𝜏) > cvi(𝛼)

}] ≤ 𝛼.

Remark 2. The two-step procedure can be applied to a model with multiple breaks where each break affects
only a subset of the parameters. Such a model can be represented as a restricted version of the pure structural
change model (1). Given the consistency of the first step test as well as the estimated break fractions in the presence
of a change in at least one of the parameters, the second step can be used to determine the break(s) that affect a
particular parameter of interest by testing the constancy of this parameter across any two adjacent regimes.

4. MONTE CARLO EVIDENCE

This section presents the results of Monte Carlo experiments designed to assess the finite sample adequacy
of the theoretical results. These will show that (i) the KP partial break test statistics are subject to substantial
over-rejections when the data generating process (DGP) involves a change in the subset of parameters outside
those pertaining to the null hypothesis, and (ii) the two-step procedure proposed has good size and considerable
power in detecting deviations from stability. The design is similar to that in Kuo (1998). For the errors ut, we con-

sider three different cases: (a) (i.i.d. errors) ut
i.i.d.∼  (0, 1); (b) (AR(1) errors) ut = 0.5ut−1 + et, et

i.i.d.∼  (0, 1); (c)

(MA(1) errors) ut = et − 0.5et−1, et
i.i.d.∼  (0, 1). The trimming 𝜖 is set at 15%. Each step of the two-step proce-

dure as well as the one-step partial KP test uses a 5% nominal level test. The number of replications throughout is
100,000.

In the first set of simulations, the dependent variable yt is generated by: yt = ct + 𝛿tzt + ut; zt = zt−1 + uzt, uzt
i.i.d.∼

 (0, 1). Four DGPs are considered: DGP-1: ct = 1, 𝛿t = 1 for all t; DGP-2: ct = 1 for all t, 𝛿t = 1 if t ≤ [𝜏0T]
and 1 + Δ𝛿 , otherwise; DGP-3: ct = 1 if t ≤ [𝜏0T] and 1 + Δc, otherwise, 𝛿t = 1 for all t; DGP-4: ct = 𝛿t = 1 if
t ≤ [𝜏0T], otherwise, ct = 1 + Δc and 𝛿t = 1 + Δ𝛿 . The breakpoint is set at 𝜏0 = 0.5. The regressor zt is assumed
to be strictly exogenous, that is, uzt and us are independent for all t and s. We compare the size and power of the
one step partial break KP statistics and the two-step procedure for T ∈ {120, 240}. The break magnitudes are set
at Δc = 1,Δ𝛿 = 0.4.

J. Time Ser. Anal. 43: 219–237 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12609
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224 M. KEJRIWAL, P. PERRON, AND X. YU

Table I (Panels A and B) presents the results. Panel A reports the rejection frequencies when testing for a break
in slope (𝛿) so that DGPs 1 and 3 pertain to size and DGPs 2 and 4 to power. The power results are size-unadjusted.
While the partial break KP test has adequate size for DGP-1, size distortions are evident for DGP-3, irrespective
of the error structure, which increase with T , consistent with the result in Theorem 1. In contrast, the proposed
two-step procedure exhibits much better size control across T and error structures, the exact size never exceeding
8%. A seemingly counterintuitive feature of the two-step approach is that for DGP-3b (AR(1) errors), the empir-
ical size need not approach the nominal size monotonically as T increases. We investigate this issue in detail in
Appendix B. Panel B reports the rejection frequencies when testing the stability of the intercept c. Here DGPs 1
and 2 correspond to size and DGPs 3 and 4 to power. Similar to the results in Panel A, the two-step test has ade-
quate size (though conservative) in all cases, while the one-step KP test is subject to substantial size distortions
under DGP-2 (a change in the slope parameter). It is instructive to look at the cases of DGP-1 and DGP-2 in more
details. DGP-1 involves no breaks. Hence, the KP test has a 5% asymptotic size and should have highest power,
while the two-step procedure is asymptotically conservative. Under the null, for the 5% of the cases in which a
rejection does occur, the second step rejects with some probability less than one, given that the estimated break
date from the first step is random, so that the limit distribution in Kejriwal and Perron (2008a) does not apply.
Still, the power of the two-step procedure remains adequate. By definition, it is less than that of the first step KP
test (subject to some simulation errors), but the reduction in power is quite minor; the biggest discrepancy is for
AR(1) errors with T = 120. Notwithstanding its two-step nature, our recommended procedure retains respectable
power that increases noticeably with T .

In a second set of simulations, we also consider DGPs involving both I(1) and I(0) regressors given by: yt =
𝜇t + 𝛽txt + 𝛿tzt + ut, where xt

i.i.d.∼  (1, 1), zt = zt−1 + uzt and uzt
i.i.d.∼  (0, 1). Four DGPs are considered: DGP-5:

𝜇t = 𝛽t = 1, 𝛿t = 1 if t ≤ [𝜏0T], otherwise 𝛿t = 1.4; DGP-6: 𝜇t = 1, 𝛽t = 𝛿t = 1, if t ≤ [𝜏0T], otherwise 𝛽t = 3,
𝛿t = 1.4; DGP-7: 𝛽t = 𝛿t = 1 and 𝜇t = 1 if t ≤ [𝜏0T], otherwise 𝜇t = 2; DGP-8: for t ≤ [𝜏0T], 𝜇t = 𝛽t = 𝛿t = 1,
and for t > [𝜏0T], 𝜇t = 2, 𝛽t = 3, 𝛿t = 1.4. For each DGP, we are interested in testing the stability of the I(0)
coefficient 𝛽t. Thus DGPs 5 and 7 correspond to size while DGPs 6 and 8 correspond to power. The same three
error structures are allowed for ut as described above. The results are presented in Panel C of Table I. For DGPs
5 and 7, the size of the two-step procedure is near the nominal 5% level, except when the sample size is small
with AR(1) errors, though the distortions reduce considerably as T increases. For DGPs 6 and 8, the results show
substantial power. The standard KP test is again rejecting far too often, indicating its non-robustness even when
testing the stability of I(0) coefficients.

The final set of simulations considers DGPs with a larger number of regressors. These simulations are motivated
by the observation that since the first step of the two-step procedure entails applying a structural change test on all
model parameters in the first step, its power may be low with a large number of regressors if only a few parameters
change.1 To investigate this possibility, two alternative designs are considered. The first appends DGPs 1–4 with
two I(1) regressors generated as independent random walks (and independent of the other variables) with unit
coefficients that remain stable throughout the sample. We label these DGPs 1′–4′ . The second design appends
DGPs 5–8 with one I(1) regressor generated as a random walk and one I(0) regressor generated as i.i.d. N(0,1),
the variables being independent of each other as well as the other variables. Each of the two variables has unit
coefficients that remain stable throughout the sample. We label these DGPs 5′–8′.

In addition to the proposed two-step procedure, we also consider here a modified procedure that replaces the
pure structural change test in the first step with a partial structural change test on the coefficient of interest. As
shown in Theorem 1, the partial test has unit asymptotic power under the alternative hypothesis that at least one of
the parameters change. The first step and final rejection frequencies of the modified procedure are denoted by TSi

1st
and TSi respectively, while those of the proposed two-step procedure are denoted by TS1st and TS respectively. The
objective is to examine the extent of power loss involved by conducting a pure structural change in the first step
as opposed to a partial structural change test on the coefficient of interest. A 5% significance level is used in each
step of the two procedures.

1 We thank an anonymous referee for pointing this out.
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TESTING PARTIAL PARAMETER STABILITY 225

Table I. Size and power of the one-step partial KP and two-step (TS) tests (×100), 5% nominal level

T = 120 T = 240

DGP 1 2 3 4 1 2 3 4

Panel A: testing for a partial change in the coefficient of an I(1) regressor (𝛿t)
a (i.i.d. errors) KP 3.66 98.83 50.92 93.44 4.28 100 73.93 99.82

TS 2.29 97.06 8.02 97.39 2.63 100 7.05 100
b (AR(1) errors) KP 2.80 75.90 10.98 66.83 3.67 98.78 27.21 95.20

TS 1.42 59.27 3.96 61.27 1.79 97.10 6.86 97.48
c (MA(1) errors) KP 2.70 99.92 65.80 96.82 1.88 100 85.26 99.97

TS 3.92 99.70 4.77 99.74 2.02 100 2.97 100
Panel B: Testing for a partial change in intercept (ct) with an I(1) regressor

a (i.i.d. errors) KP 4.43 81.31 84.72 84.88 4.79 92.64 97.12 93.56
TS 2.31 8.40 59.94 66.24 2.64 6.21 81.53 82.19

b (AR(1) errors) KP 4.27 44.74 28.86 50.09 4.87 71.55 59.32 73.90
TS 1.70 8.95 11.89 27.95 2.12 9.34 33.49 52.35

c (MA(1) errors) KP 1.10 88.69 97.27 91.44 1.08 97.74 99.94 98.09
TS 2.98 3.88 81.33 82.66 1.63 2.53 94.76 94.20

DGP 5 6 7 8 5 6 7 8

Panel C: Testing for a partial change in the coefficient of an I(0) regressor (𝛽t)
a (i.i.d. errors) KP 47.25 95.36 33.82 97.92 81.10 97.11 64.79 98.78

TS 6.42 99.86 5.07 99.88 6.17 100 6.33 100
b (AR(1) errors) KP 38.51 93.27 20.31 97.16 72.86 96.8 44.14 98.08

TS 1.80 68.5 0.33 70.24 3.89 99.67 1.61 99.66
c (MA(1) errors) KP 48.32 95.73 33.7 98.24 82.59 97.53 62.76 98.84

TS 6.46 99.95 6.07 99.95 5.61 100 5.85 100

The results are reported in Table II. The performance of the proposed and modified procedures in terms of finite
sample size is broadly similar to each other and adequate in both cases. In terms of power, the modified procedure
offers discernible improvements only in the case of AR(1) errors when the sample size is small (T = 120). In
other cases, the improvements are marginal at best. On the other hand, while the proposed approach is simple to
implement in practice, the modified approach is computationally costly –with k parameters, the proposed approach
only requires k + 1 tests while the modified approach requires 2k tests. This feature also makes the modified
approach more susceptible to multiple testing issues. Thus, the proposed approach can serve as a simple, yet useful
addition to the practitioner’s toolkit when testing for partial structural change.

Appendix B contains additional Monte Carlo results that explore the behavior of empirical size as a function
of sample size/break magnitude. These simulations are motivated by the fact that the size distortions incurred by
the two-step procedure for DGPs 2b–3b in Table I do not decrease as the sample size increases. We show that the
proposed procedure remains adequate as the sample size/break magnitude varies and provide a discussion for the
observed evolution of the empirical size. See Appendix B for details.

5. EMPIRICAL APPLICATION

This section applies the proposed procedure to study the stability of US money demand and the associated issue
of estimating the welfare cost of inflation. A standard approach to measuring the welfare cost of inflation is due
to Bailey (1956), who suggests that such costs can be measured as the area underlying the inverse money demand
function that represents the consumer surplus that could be realized from a reduction in the nominal interest rate
from a positive level to a near-zero level. The rationale is that if real money balances are treated as a consump-
tion good due to its ability to provide liquidity, inflation can be viewed as a tax on real balances through its
effect on nominal interest rates and hence the opportunity cost of holding real balances. In such a framework, the

J. Time Ser. Anal. 43: 219–237 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12609
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226 M. KEJRIWAL, P. PERRON, AND X. YU

Table II. Size and power of two-step (TS and TSi) tests (×100), 5% nominal level, larger number of regressors

T = 120 T = 240

DGP 1′ 2′ 3′ 4′ 1′ 2′ 3′ 4′

Panel A: Testing for a partial change in the coefficient of an I(1) regressor (𝛿t )
a (i.i.d. errors) TS1st 4.51 93.53 35.25 94.56 4.59 99.97 70.1 100

TS 2.25 89.83 6.81 90.91 2.14 99.95 7.52 99.99
TSi

1st 5.29 97.53 30.8 94.97 5.73 99.99 53.15 99.92
TSi 2.38 93.17 5.39 91.25 2.38 99.97 5.83 99.91

b (AR(1) errors) TS1st 2.32 44.94 5.76 47.64 2.83 92.26 13.76 92.39
TS 1.13 38.32 2.1 39.99 1.22 90.89 3.67 91
TSi

1st 5.15 72.98 9.97 68.76 5.57 98.16 17.57 96.09
TSi 2.18 60.09 3.21 56.62 2.32 96.27 4.23 94.34

c (MA(1) errors) TS1st 18.36 98.77 62.38 99.04 8.96 100 95 100
TS 12.09 97.9 11.05 98.21 5.53 100 5.8 100
TSi

1st 5.72 99.83 45.72 98.34 3.47 100 71.53 100
TSi 4.00 98.87 7.36 97.47 2.08 100 4.48 100

Panel B: Testing for a partial change in intercept (ct) with an I(1) regressor
a (i.i.d. errors) TS1st 4.53 93.78 34.83 94.73 5.12 99.99 69.07 100

TS 1.95 9.64 16.8 29.7 1.95 6.96 37.22 42.98
TSi

1st 5.01 77.05 54.98 80.06 5.92 93.19 82.79 94.47
TSi 1.98 7.64 24.07 24.02 2.11 6.52 41.46 39.99

b (AR(1) errors) TS1st 2.55 46.15 5.25 46.9 2.78 92.53 12.92 92.37
TS 1.33 8.26 2.82 11.7 1.29 10.73 6.89 22.35
TSi

1st 5.53 41.47 15.96 44.63 5.79 68.69 31.76 70.86
TSi 2.54 6.55 7.32 10.43 2.35 7.69 13.94 16.34

c (MA(1) errors) TS1st 19.43 98.53 62.68 98.93 8.74 100 95.3 100
TS 10.61 8.81 35.11 43.87 4.64 4.62 66.73 66.33
TSi

1st 3.51 85.15 82.53 87.62 2.14 97.9 98.91 98.1
TSi 1.54 7.35 42.6 38.25 0.9 4.48 68.36 64.73

DGP 5′ 6′ 7′ 8′ 5′ 6′ 7′ 8′

Panel C: Testing for a partial change in the coefficient of an I(0) regressor (𝛽t)
a (i.i.d. errors) TS1st 81.03 99.83 36.09 99.91 99.44 100 72.09 100

TS 6.82 99.83 4.66 99.91 6.39 100 6.08 100
TSi

1st 45.65 98.4 24.4 99.3 79.64 98.78 47.25 99.56
TSi 4.45 98.4 3.88 99.3 5.27 98.78 4.39 99.56

b (AR(1) errors) TS1st 10.06 69.09 2.59 68.6 36.72 99.23 5.75 99.22
TS 0.93 69.09 0.42 68.6 2.56 99.23 0.95 99.22
TSi

1st 37.91 97.47 19.99 99.12 72.75 98.93 37.24 99.41
TSi 3.86 97.47 3.11 99.12 4.81 98.93 4.03 99.41

c (MA(1) errors) TS1st 82.55 99.95 40.47 99.92 99.67 100 83.49 100
TS 6.75 99.95 5.74 99.92 6.15 100 6.61 100
TSi

1st 42.97 98.32 21.92 99.41 79.3 98.88 43.65 99.51
TSi 4.13 98.32 4.45 99.41 5.13 98.88 4.21 99.51

specification of the money demand function naturally plays a crucial role in the estimation of the welfare cost of
inflation.

Empirical work in this context has typically relied on two alternative functional forms for the money demand
function: the log–log form (Meltzer, 1963) and the semi-log form (Cagan, 1956). The log–log form allowing for
time-varying parameters is specified as follows:

ln

(
M
P

)
t

= at + ct ln

(
Y
P

)
t

+ bt ln rt + ut, (2)

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
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TESTING PARTIAL PARAMETER STABILITY 227

where M∕P denotes real money balances, Y∕P denotes real income and r denotes the nominal interest rate. The
parameters ct and bt measure the time-varying income and interest elasticities of money demand respectively. The
semi-log form is specified as follows:

ln

(
M
P

)
t

= at + ct ln

(
Y
P

)
t

+ btrt + ut. (3)

In addition to (2) and (3), the following specifications that impose a unitary elasticity of money demand are
frequently estimated, where m denotes the money-income ratio M∕Y:

ln mt = at + bt ln rt + ut. (4)

ln mt = at + btrt + ut. (5)

The application of Bailey’s method to (2) yields the following measure of the welfare cost at a positive interest
rate r (see, e.g., Calza and Zaghini, 2010):

w(r, t) = exp (at)
(

Y
P

)ct−1 −bt

1 + bt

r1+bt , (6)

while the expression for the semi-log function (3) takes the form:

w(r, t) =
exp (at)
−bt

(
Y
P

)ct−1

[1 − (1 − btr) exp(btr)]. (7)

Equations (6) and (7) are typically evaluated at the average value of (Y∕P) over the sample. The corresponding
expressions for the restricted specifications (4) and (5) are given as follows:

w(r, t) = exp (at)
−bt

1 + bt

r1+bt . (8)

w(r, t) =
exp (at)
−bt

[1 − (1 − btr) exp(btr)]. (9)

A wide range of welfare cost estimates is available in the literature depending on whether a log–log or semi-log
form is estimated, whether instability is allowed for, as well as whether a unitary income elasticity is imposed.
We do not undertake a comprehensive review of this literature here but rather focus on the studies that are more
closely related to ours (see Mogliani and Urga, 2018; Miller et al., 2019, for further references and discussions).

Lucas (2000) argues in favor of a log–log form due to its consistency with inventory-theoretic money demand
models, while Ireland (2009) advocates the use of a semi-log specification for post-1980 data due to a shift in the
monetary policy regime towards low interest rates. While the former study finds a welfare cost of 10% inflation
to be slightly less than 1% of GDP, the latter reports a much lower estimate of about 0.25%. The estimates in
both studies are obtained from specifications that assume a unit income elasticity of money demand. Mogliani and
Urga (2018) investigate the stability of the log–log form of the money demand function using the joint KP test but
again imposes a unitary income elasticity. They find evidence of two breaks (1945 and 1976) and a welfare cost of
about 0.1% in the post-1976 period compared to 0.8% over 1945–1975. Miller et al. (2019) adopt the time-varying
cointegration framework developed in Bierens and Martins (2010) where the coefficients are modeled as smooth
functions of time. They find that the unitary income elasticity restriction is rejected for the semi-log form but not

J. Time Ser. Anal. 43: 219–237 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12609
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228 M. KEJRIWAL, P. PERRON, AND X. YU

Table III. Two-step procedure and Arai–Kurozumi (AK) test results, 5% significance level

Log–Log form Critical values Semi-log form Critical values

Panel A: Unrestricted model
AK test 0.056 0.115 0.062 0.110
First 423.03 14.47 511.15 14.47
Second : at 6.86 3.84 7.33 3.84
Second : ct 7.03 3.84 7.05 3.84
Second : bt 5.02 3.84 1.25 3.84

Panel B: Restricted model
AK test 0.090 0.147 0.068 0.095
First 613.14 12.25 674.48 12.25
Second : at 6.09 5.99 19.03 7.81
Second : bt 13.83 5.99 13.24 7.81

for the log-log form. They report that the welfare cost estimate of 10% inflation lies in the range 0.025–0.75% of
GDP, with an average of about 0.27% over the sample. In what follows, we will employ the proposed two-step
approach to test whether the unitary restriction on income elasticity is supported by US data and obtain estimates
of the regime-dependent welfare costs accordingly. We do not make an a priori choice between the log–log and
semi-log forms and present results for both forms.

Our empirical analysis employs the same dataset as Miller et al. (2019).2 The data are quarterly and span the
period 1959:Q1–2010:Q4. The preliminary unit root analysis in Miller et al. (2019) confirms the presence of a unit
root in ln(M∕P), ln(Y∕P), and r. The first step of the two-step procedure is implemented using KP’s UDmax test
that entails taking the maximum of the sup-Wald statistics which allow for one up to five breaks with the trimming
level set at 15%. If the UDmax test rejects, the number of breaks is determined using the sequential procedure
proposed by KP. Endogeneity of the regressors is accounted for using four leads/lags of the first-differenced regres-
sors while serial correlation is accounted for using a heteroskedasticity and autocorrelation consistent estimate
of the long-run variance based on KP’s hybrid method using a quadratic spectral kernel with Andrews’ (1991)
data-dependent bandwidth choice. Given that the first step KP test is consistent against a purely spurious regres-
sion, we complement our analysis by testing for the presence of cointegration using Arai and Kurozumi’s (2007,
AK henceforth) LM-type test for the null hypothesis of cointegration with breaks against the alternative of no
cointegration. While AK’s test allowed for a single break, its multiple break extension was developed by Kejriwal
(2008).

The testing results are presented in Table III. Panel A reports the findings for the unrestricted models while Panel
B reports those for the models that impose a unitary income elasticity. The two-step results indicate instability in
all coefficients for all models except bt in the unrestricted semi-log model. These results therefore reject the unit
elasticity restriction that is often assumed in the literature. The AK test indicates the presence of cointegration
regardless of the maintained functional form.

Table IV reports the results from estimating the models selected by the two step procedure in Table III. The
regime-wise point estimates along with 95% confidence intervals are presented along with the mean welfare cost
of 0%, 2%, and 10% inflation. The confidence intervals around the welfare cost estimates are obtained using a wild
bootstrap procedure using 999 replications. Several features of the results are worth noting. First, the unrestricted
model selects a single break in 1993 for both functional forms. In contrast, the restricted models select two or three
breaks depending on whether the log–log or semi-log specification is adopted. For the log-log form, Mogliani
and Urga (2018) also find evidence of two breaks with the second break located in 1976. Second, the unit income
elasticity restriction is rejected in both regimes irrespective of the adopted functional form. Both forms entail a

2 The data come from the Federal Reserve Bank of St. Louis’ FRED database and consists of a measure of money supply (M1) adjusted for
deposit sweep programs, nominal GDP (Y), the 3-month US Treasury Bill rate (r), and the GDP deflator (P). See Miller et al. (2019) for further
details.

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
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TESTING PARTIAL PARAMETER STABILITY 229

Table IV. Welfare cost of inflation estimates, with/without restriction, log–log/semi-log form, 95% confidence interval (CI)

Welfare cost (%)

ât ĉt b̂t 0% 2% 10%
Regime Dates CI(ât) CI(ĉt) CI(b̂t) CI CI CI

Panel A1: Unrestricted model, log–log form
1 1959:Q1–1993:Q3 1.40 0.56 −0.24 0.20 0.42 0.61

[0.51,2.29] [0.47,0.64] [−0.30,−0.18] [0.18,0.22] [0.39,0.46] [0.57,0.66]
2 1993:Q4–2010:Q4 9.96 −0.33 −0.11 0.05 0.11 0.17

[8.93,10.98] [−0.46,−0.21] [−0.15,−0.07] [0.04,0.05] [0.09,0.13] [0.14,0.20]
Mean – 5.68 0.11 −0.18 0.12 0.27 0.39

– [5.36,5.99] [0.07,0.15] [−0.19,−0.16] [0.11,0.13] [0.25,0.29] [.36,.42]
Panel A2: Restricted model, log–log form

1 1959:Q1–1968:Q3 −2.51 − −0.32 0.34 0.67 0.93
[−2.57,−2.46] – [−0.33,−0.30] [0.30,0.39] [0.60,0.74] [0.84,1.02]

2 1968:Q4–1976:Q1 −1.97 – −0.11 0.08 0.19 0.29
[−2.15,−1.79] – [−0.16,−0.06] [0.03,0.14] [0.08,0.31] [0.13,0.46]

3 1976:Q2–2010:Q4 −2.12 – −0.08 0.04 0.10 0.16
[−2.20,−2.04] – [−0.11,−0.05] [0.04,0.05] [0.09,0.11] [0.14,0.17]

Mean – −2.20 – −0.17 0.15 0.32 0.46
– [−2.27,−2.13] – [−0.19,−0.15] [0.13,0.18] [0.27,0.37] [0.40,0.52]

Panel B1: Unrestricted model, semi-log form
1 1959:Q1–1993:Q2 2.58 0.53 −3.73 0.04 0.22 0.52

[2.05,3.12] [0.46,0.59] [−4.05,−3.42] [0.03,0.04] [0.21,0.24] [0.49,0.55]
2 1993:Q3–2010:Q4 9.93 −0.28 −3.73 0.02 0.14 0.32

[8.99,10.87] [−0.38,−0.18] [−4.05,−3.42] [0.02,0.02] [0.13,0.14] [0.30,0.34]
Mean – 6.25 0.12 −3.73 0.03 0.18 0.42

– [5.96,6.56] [0.09,0.16] [−3.98,−3.50] [0.03,0.03] [0.17,0.19] [0.40,0.44]
Panel B2: Restricted model, semi-log form

1 1959:Q1–1968:Q2 −1.13 – −8.94 0.11 0.58 1.17
[−1.16,−1.09] – [−9.72,−8.15] [0.10,0.12] [0.53,0.64] [1.09,1.25]

2 1968:Q3–1975:Q4 −1.50 – −2.36 0.02 0.15 0.36
[−1.54,−1.46] – [−3.28,−1.43] [0.01,0.03] [0.08,0.22] [0.20,0.51]

3 1976:Q1–1983:Q3 −1.71 – −2.24 0.02 0.12 0.28
[−1.77,−1.65] – [−2.86,−1.63] [0.01,0.02] [0.10,0.14] [0.24,0.33]

4 1983:Q4–2010:Q4 −1.76 – −2.28 0.02 0.11 0.27
[−1.78,−1.74] – [−2.57,−1.99] [0.02,0.02] [0.10,0.12] [0.25,0.29]

Mean – −1.53 – −3.96 0.04 0.24 0.52
– [−1.55,−1.50] – [−4.36,−3.55] [0.04,0.05] [0.22,0.26] [0.47,0.57]

reduction in income elasticity from about 0.5 to −0.3. The pre-break estimate of the income elasticity is consistent
with the Baumol–Tobin inventory theoretic approaches to the transactions demand for money as well as empirical
findings in Ball (2001). The post-break negative income elasticity, on the other hand, is in conformity with the
constant target-threshold monitoring model of Akerlof and Milbourne (1980) in which money is transferred into
or out of the account if the cash balance crosses a lower or upper threshold level. The interest elasticity estimate
is also lower in more recent decades, consistent with recent findings in Berentsen et al. (2015) and Miller et al.
(2019). Third, the imposition of unitary income elasticity leads to upward biased estimates of the welfare cost
of inflation, regardless of the choice of functional form. For instance, the mean welfare cost of 10% inflation
implied by the unrestricted model is 0.39% and 0.42% for the log–log and semi-log forms respectively, compared
to 0.46% and 0.52% for the restricted model. Fourth, the welfare cost estimates are lower in more recent periods,
in accordance with the findings in Berentsen et al. (2015) and Mogliani and Urga (2018). Fifth, compared to the

J. Time Ser. Anal. 43: 219–237 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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230 M. KEJRIWAL, P. PERRON, AND X. YU

Table V. Welfare cost of inflation estimates, restricted model imposed with break dates estimated from the unrestricted model,
log–log/semi-log form, 95% confidence interval (CI)

Welfare cost (%)

ât ĉt b̂t 0% 2% 10%
Regime Dates CI(ât) CI(ĉt) CI(b̂t) CI CI CI

Panel A: Restricted model, imposed with break dates estimated from unrestricted model, log–log form
1 1959:Q1–1993:Q3 −2.94 – −0.42 0.49 0.88 1.16

[−3.24,−2.64] – [−0.54,−0.29] [0.41,0.60] [0.76,1.02] [1.03,1.33]
2 1993:Q4–2010:Q4 −2.34 – −0.14 0.08 0.19 0.28

[−2.70,−1.98] – [−0.25,−0.04] [0.06,0.10] [0.14,0.23] [0.22,0.35]
Mean – −2.64 – −0.28 0.29 0.53 0.72

– [−2.72,−2.56] – [−0.31,−0.26] [0.25,0.34] [0.47,0.61] [0.65,0.81]
Panel B: Restricted model, imposed with break dates estimated from unrestricted model, semi-log form

1 1959:Q1–1993:Q2 −1.31 – −6.87 0.07 0.42 0.89
[−1.61,−1.00] – [−10.37,−3.36] [0.06,0.09] [0.36,0.48] [0.78,0.99]

2 1993:Q3–2010:Q4 −1.70 – −3.88 0.03 0.19 0.43
[−1.75,−1.65] – [−5.33,−2.44] [0.02,0.04] [0.15,0.22] [0.36,0.50]

Mean – −1.50 – −5.38 0.05 0.30 0.66
– [−1.54,−1.47] – [−6.10,−4.70] [0.04,0.06] [0.26,0.34] [0.59,0.73]

log–log form, the semi-log form tends to produce larger estimates of the welfare cost at the 10% inflation level
and smaller estimates at the 0% and 2% levels.

To further investigate the relevance of the unitary elasticity restriction, we re-estimate the restricted model using
the break date estimate obtained from the unrestricted model. This allows us to evaluate the impact of imposing the
restriction on the estimated welfare costs while controlling for break date misspecification. The results, presented
in Table V, show that the mean restricted welfare cost estimates are now even higher than those reported in Table IV
indicating that the two forms of misspecification have offsetting effects on the magnitude of the welfare cost, with
elasticity misspecification inducing a positive effect and break date misspecification inducing a negative effect.

The finding of a break in 1993 in the unrestricted case can be explained by the advancement of information
technology with respect to financial products during the post-1993 period and its impact on the demand for money.
In particular, the introduction of ‘sweep technology’ in 1993 allowed banks to automatically transfer funds from
checking accounts to money market deposit accounts in which the holder was permitted to make only a few
withdrawals every month. This deposit-sweeping software reduced the reserve requirements of banks making
more funds available for lending and providing improved access to the money market. Berentsen et al. (2015)
construct a microfounded monetary model that can be used to assess the impact of a one-time increase in the access
probability to the money market in the early 90s. When calibrated to US data, their model is able to replicate the
empirical behavior of the money demand function well suggesting an important role of the sweep technology in
explaining the observed changes in money demand.

In summary, the empirical results do not support the typically assumed restriction of unitary income elasticity
for both the log–log and semi-log functional forms. Imposing such a restriction leads to overestimating the number
of breaks in the money demand relationship as well as the welfare cost of inflation. The unrestricted models point
to the prevalence of a single break that can be attributed to technological innovations in the financial sector during
the early 90s that affected the demand for money.

6. CONCLUSION

This article dealt with testing for partial parameter stability in cointegrated regression models. Using an asymptotic
framework for the break magnitude ensuring consistent estimates of the break fractions, we first showed that
existing partial break sup-Wald tests diverge with T when the coefficients not being tested are subject to change.

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
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TESTING PARTIAL PARAMETER STABILITY 231

We proposed a simple two-step procedure which first tests for joint parameter stability and subsequently conducts
a standard chi-squared stability test on the coefficients of interest allowing the other coefficients to change at the
breakpoints estimated by minimizing the sum of squared residuals in the pure structural change model. The relevant
asymptotic theory is provided and simulations showed the procedure to work well in a variety of scenarios. An
application to estimating the welfare cost of US inflation illustrates the relevance of the procedure in practice.
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APPENDIX A: PROOFS

For any matrix WT×q = (w1,… ,wT )′, define the projection matrices PW = W(W ′
W)−1W

′
, MW = IT×q −PW and the

matrix W̄ that diagonally partitions W at T1, that is, W̄ = diag(W1,W2), where Wi = (wTi−1+1,… ,wTi
)′ (i = 1, 2)

with T0 = 0 and T2 = T . Also, let Y = (y1,… , yT )′, 𝜄T×1 = (1,… , 1)′, u = (u1,… , uT )′, Zf = (zf ,1,… , zf ,T )′, Zb =
(zb,1,… , zb,T )′.

Proof of Theorem 1. We prove the result for case (a), as the proof of case (b) follows using similar arguments.
Throughout, the true values are denoted with a superscript 0. Let

𝜂 = (0,… , 0
⏟⏟⏟

1×[𝜏0T]

, 𝜆c𝜈T + z′
f ,[𝜏0]T+1

𝜆f T
−1∕2𝜈T ,… , 𝜆c𝜈T + z′f ,T𝜆f T

−1∕2𝜈T

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1×[(1−𝜏0)T]

)′

and 𝛿0
b = (𝛿0′

b1, 𝛿
0′
b2)

′. Under H0,B, 𝛿0
b1 = 𝛿0

b2 = 𝛿0
b so that the DGP is

Y = c0
1𝜄 + Zf 𝛿

0
f + Zb𝛿

0
b + u + 𝜂 = c0

1𝜄 + Zf 𝛿
0
f + Z̄b𝛿

0
b + u + 𝜂. (A.1)

Let G0 = [𝜄,Zf ,Zb] = (G0,1,… ,G0,T )′. We first derive the limiting behavior of the statistic FT ,B(𝜏0). The restricted
sum of squared residuals is

SSR0 =
∑T

t=1
ũ2

t = (u + 𝜂)′MG0
(u + 𝜂) = (u + 𝜂)′(u + 𝜂) − (u + 𝜂)′PG0

(u + 𝜂)

= u′u + 2u′𝜂 + 𝜂′𝜂 − (u′PG0
u + 2u′PG0

𝜂 + 𝜂′PG0
𝜂). (A.2)

Defining JT = diag(T−1∕2,T−1Iqf
,T−1Iqb

), we have

T−1∕2𝜈−1
T JTG′

0𝜂 =
∑T

t=1
JTG0,tT

−1∕2𝜈−1
T 𝜂t = T−1

∑T

t=[𝜏0T]+1
{(T1∕2JT )G0,t}{𝜈−1

T 𝜂t}

⇒

(
∫

1

𝜏0

(𝜆c + 𝜆′f B
f
z(r))dr,∫

1

𝜏0

Bf ′
z (r)(𝜆c + 𝜆′f B

f
z(r))dr,∫

1

𝜏0

Bb′
z (r)(𝜆c + 𝜆′f B

f
z(r))dr

)′

= Op(1).

Then it follows that T−1u′u = Op(1), T−1∕2𝜈−1
T u′𝜂 = T−1∕2u′(𝜈−1

T 𝜂) = Op(1)

T−1𝜈−2
T 𝜂′𝜂 = T−1(𝜈−1

T 𝜂)′(𝜈−1
T 𝜂) = Op(1)

u′PG0
u = u′G0(G′

0G0)−1G′
0u = {u′G0JT}{(JTG′

0G0JT )−1}{JTG′
0u} = Op(1)

T−1∕2𝜈−1
T u′PG0

𝜂 = {u′G0JT}{(JTG′
0G0JT )−1}{T−1∕2𝜈−1

T JTG′
0𝜂} = Op(1)

T−1𝜈−2
T 𝜂′PG0

𝜂 = {T−1∕2𝜈−1
T 𝜂′G0JT}{(JTG′

0G0JT )−1}{T−1∕2𝜈−1
T JTG′

0𝜂} = Op(1). (A.3)

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
DOI: 10.1111/jtsa.12609

 14679892, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12609 by Fudan U

niversity, W
iley O

nline L
ibrary on [24/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TESTING PARTIAL PARAMETER STABILITY 233

Let G1 = [𝜄,Zf , Z̄b]. The unrestricted sum of squared residuals evaluated at 𝜏0 is

SSRB(𝜏0) =
∑T

t=1
û2

t = u′u + 2u′𝜂 + 𝜂′𝜂 − (u′PG1
u + 2u′PG1

𝜂 + 𝜂′PG1
𝜂) (A.4)

where the orders of u′PG1
u, u′PG1

𝜂, and 𝜂′PG1
𝜂 are the same as those of u′PG0

u, u′PG0
𝜂, and 𝜂′PG0

𝜂 respectively,
stated in (A.3). Combining (A.2) and (A.4), we have:

SSR0 − SSRB(𝜏) = (u′PG1
u + 2u′PG1

𝜂 + 𝜂′PG1
𝜂) − (u′PG0

u + 2u′PG0
𝜂 + 𝜂′PG0

𝜂)

= [Op(1) + Op(T1∕2𝜈T ) + Op(T𝜈2
T )] − [Op(1) + Op(T1∕2𝜈T ) + Op(T𝜈2

T )] = Op(T𝜈2
T ) (A.5)

For the long-run variance estimate 𝜎̂2
B(𝜏

0), we have, denoting b0
T = bT (𝜏0),

𝜎̂2
B(𝜏

0) = T−1
∑T

t=1
ũ2

t + 2
∑T−1

j=1
w

(
j

b0
T

)
T−1

∑T

t=j+1
ũtũt−j (A.6)

=
[

T−1
∑T

t=1
u2

t + Op(𝜈2
T )
]
+ 2

∑T−1

j=1
w

(
j

b0
T

)
T−1

∑T

t=j+1
utut−j + Op(b0

T𝜈
2
T ) (A.7)

= T−1
∑T

t=1
u2

t + 2
∑T−1

j=1
w

(
j

b0
T

)
T−1

∑T

t=j+1
utut−j + op(1) + Op(b0

T𝜈
2
T ) (A.8)

= 𝜎2 + Op(b0
T𝜈

2
T ).

The equality of the first term in (A.6) with the term within square brackets in (A.7) follows from (A.3). For the
second term in (A.6), note that, for a given j, ũt−j = (ut−j + 𝜂t−j) − G′

0,t−j(G
′
0G0)−1G′

0(u + 𝜂). It follows that

T−1
∑T

t=j+1
ũtũt−j = T−1

∑T

t=j+1
[(ut + 𝜂t) − G′

0,t(G
′
0G0)−1G′

0(u + 𝜂)][(ut−j + 𝜂t−j)

− G′
0,t−j(G

′
0G0)−1G′

0(u + 𝜂)]

= T−1
∑T

t=j+1
[utut−j + ut𝜂t−j + 𝜂tut−j + 𝜂t𝜂t−j

− (ut + 𝜂t)G′
0,t−j(G

′
0G0)−1G′

0(u + 𝜂) − (ut−j + 𝜂t−j)G′
0,t(G

′
0G0)−1G′

0(u + 𝜂)

+ (u + 𝜂)′G0(G′
0G0)−1G0,tG

′
0,t−j(G

′
0G0)−1G′

0(u + 𝜂)]

= T−1
∑T

t=j+1
utut−j + T−1[Op(T1∕2𝜈T ) + Op(T1∕2𝜈T ) + Op(T𝜈2

T )

+ Op(T𝜈2
T ) + Op(T𝜈2

T ) + Op(T𝜈2
T )]

= T−1
∑T

t=j+1
utut−j + Op(𝜈2

T ), uniformly in j. (A.9)

Using (b0
T )

−1 ∑T−1
j=1

|||w( j

b0
T

)||| → ∫ +∞
0 |w(x)|dx < ∞ (e.g., Andrews, 1991), we have from (A.9),

(b0
T𝜈

2
T )

−1

{∑T−1

j=1
w

(
j

b0
T

)
T−1

∑T

t=j+1
ũtũt−j −

∑T−1

j=1
w

(
j

b0
T

)
T−1

∑T

t=j+1
utut−j

}
≤ (b0

T )
−1

∑T−1

j=1

|||||w
(

j

b0
T

)||||| sup
j≥1

|||||v−2
T T−1

∑T

t=j+1
ũtũt−j − v−2

T T−1
∑T

t=j+1
utut−j

|||||
=
[
(b0

T )
−1

∑T−1

j=1

||||w
(

j

b0
T

)]
Op(1) = Op(1), (A.10)
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234 M. KEJRIWAL, P. PERRON, AND X. YU

which establishes (A.8).
Combining the results of the numerator (A.5) and the denominator (A.8) of the statistic FT ,B(𝜏0), we have:

FT ,B(𝜏0) = Op(T𝜈2
T )∕[𝜎

2 + Op(b0
T𝜈

2
T )] = Op((b0

T )
−1T) if b0

T𝜈
2
T

p
→ ∞, and is Op(T𝜈2

T ) otherwise. The result then
follows since sup FT ,B(𝜏) = sup𝜏∈Λ𝜖 FT ,B(𝜏) ≥ FT ,B(𝜏0). This completes the proof of Theorem 1.

Proof of Theorem 2. We only prove (a), as the proof of (b) follows using similar arguments. We first show that
F(2)

T ,B(𝜏
0) has a limiting 𝜒2(qb) distribution. For the restricted regression under H0,B, we denote the design matrix

as X0(𝜏0) = [𝜄0, Z̄0
f ,Zb], where 𝜄0 [Z̄0

f ] is a matrix which diagonally partitions 𝜄 [Zf ] at the true break point T0
1 . For

the unrestricted regression, we similarly have X1(𝜏0) = [𝜄0, Z̄0
f , Z̄

0
b ]. For notational simplicity, we simply drop the

index 𝜏0 in X0(𝜏0) and X1(𝜏0). First, we note that Zb = Z̄0
bE, where E = (Iqb

, Iqb
)′. Note that X0 = X1H, where

H = diag(I2(1+qf ),E2qb×qb
). It then follows that

SSR0(𝜏0) − SSRB(𝜏0) = u′MX0
u − u′MX1

u = u′(PX1
− PX0

)u.

Note that PX01
= PX1

− PX0
is an orthogonal projection matrix since the column space of X0 is included in that of

X1. Hence, there exists a (T × qb) matrix X01 with rank qb that satisfies PX01
= X01(X′

01X01)−1X′
01. Then, applying a

central limit theorem conditional on X01, we have that [SSR0(𝜏0) − SSRB(𝜏0)]∕𝜎2 = u′PX01
u∕𝜎2

d
→ 𝜒2(qb). Since

the limit does not depend on the conditioning matrix X01, it is also the unconditional distribution. Finally, since

𝜎̂2
B(𝜏

0)
p
→ 𝜎2 under H0,B, it follows that F(2)

T ,B(𝜏
0) = [SSR0(𝜏0) − SSR1(𝜏0)]∕𝜎̂2

B(𝜏
0)

d
→ 𝜒2(qb).

We next prove that F(2)
T ,B(𝜏) = F(2)

T ,B(𝜏
0) + op(1). Let T̂1 be the estimated break date, that is, T̂1 = [T𝜏]. From

Kejriwal and Perron (2008a, Theorem 2), 𝜏 is T𝜈2
T -consistent for 𝜏0. Thus T̂1 = T0

1 + Op(𝜈−2
T ). Let T̂1 = T0

1 +
[s𝜈−2

T ], z1f ,t = (1, z′f ,t)
′, 𝜆cf = (𝜆c, 𝜆

′
f )
′, Dcf ,T = diag(1,T−1∕2Iqf

). Denote SSR as the sum of squared residuals from
estimating the model without breaks, that is, 𝜆c = 01×1, 𝜆b = 0qb×1 and 𝜆f = 0qf ×1. Following Bai (1997, Lemma

A.5), consider T̂1 ≤ T0
1 . Then we can write

SSR0(𝜏0) − SSR0(𝜏) = [SSR − SSR0(𝜏)] − [SSR − SSR0(𝜏0)]

= −𝜆′cf

[
𝜈2

TDcf ,T

(∑T0
1

t=T̂1+1
z1f ,tz

′
1f ,t

)
Dcf ,T

]
𝜆cf + 2𝜆′cf

[
𝜈TDcf ,T

∑T0
1

t=T̂1+1
z1f ,tut

]
+ op(1)

⇒ − |s| 𝜆′cf

(
1 Wf

z (𝜏
0)′(Ωff

zz)
1∕2

(Ωff
zz)

1∕2Wf
z (𝜏

0) (Ωff
zz)

1∕2Wf
z (𝜏

0)Wf
z (𝜏

0)′(Ωff
zz)

1∕2

)
𝜆cf

+ 2𝜆′cf

( 𝜎Wc(−s)
𝜎Wc(−s)(Ωff

zz)
1∕2Wf

z (𝜏
0)

)
≡ L1(s), (A.11)

where Wc(.) and Wf
z (.) (qf × 1) are independent Brownian motions on [0,∞). Let G0,t = (1, z′f ,t, z

′
b,t)

′ = (z′1f ,t, z
′
b,t)

′

and DT = diag(1,T−1∕2Iqf
,T−1∕2Iqb

). Under H0,B, 𝜆b = 0qb
, and

SSRB(𝜏0) − SSRB(𝜏) = −
[
𝜆′cf , 0

′
qb

](
𝜈2

TDT

{∑T0
1

t=T̂1+1
G0,tG

′
0,t

}
DT

)[
𝜆′cf , 0

′
qb

]′
+ 2

[
𝜆′cf , 0

′
qb

](
DT𝜈T

{∑T0
1

t=T̂1+1
G0,tut

})
+ op(1) ⇒ L1(s). (A.12)
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Thus, from (A.11) and (A.12), we have

SSR0(𝜏) − SSRB(𝜏) = SSR0(𝜏0) − SSRB(𝜏0) + op(1)

which also holds for the case T̂1 > T0
1 using a symmetric argument. For 𝜎̂2

B(𝜏), following similar arguments as
in the proof of Theorem 1, we can decompose 𝜎̂2

B(𝜏) into its variance and covariance components and adapt the
technique used in (A.11) to show that each component converges to the corresponding component of 𝜎̂2

B(𝜏
0) . The

details are omitted. Combining these results, the proof is complete since

F(2)
T ,B(𝜏) =

SSR0(𝜏) − SSRB(𝜏)
𝜎̂2

B(𝜏)
=

SSR0(𝜏0) − SSRB(𝜏0) + op(1)
𝜎̂2

B(𝜏0) + op(1)

= F(2)
T ,B(𝜏

0) + op(1)
d
→ 𝜒2(qb).

Proof of Corollary 1. We prove the result under the null hypothesis H0,B, the proof under H0.C being entirely
analogous. Define the following events:

S1 =
{

sup FT ,A(𝜏) > cvA(𝛼)
}

S2 =
{

F(2)
T ,B(𝜏) > cvB(𝛼)

}
.

Then we have

P
[{

sup FT ,A(𝜏) > cvA(𝛼)
}
∩
{

F(2)
T ,i(𝜏) > cvi(𝛼)

}]
= P(S1 ∩ S2) = P(S1)P(S2|S1).

We consider the following two cases depending on whether a break exists in the coefficients not of interest under
the null.

Case 1: 𝜆c ≠ 0 and/or 𝜆f ≠ 0. As T → ∞, we have P(S1) → 1 (since the first step is consistent), P(S2|S1) → 𝛼 (by
Theorem 2). Thus, P(S1 ∩ S2) → 𝛼.

Case 2: 𝜆c = 𝜆f = 0. As T → ∞, we have P(S1) → 𝛼 (by Theorem 1 of Kejriwal and Perron, 2010). Since
P(S2|S1) ≤ 1, limT→∞P(S1 ∩ S2) ≤ 𝛼. Note that P(S2|S1) does not converge to 𝛼 since the second step test does
not have a limiting chi-squared distribution which in turn is due to the fact that the break fraction estimate has a
random limit in this case with no break in any of the coefficients.

Combining Cases 1 and 2, the result follows. The proof of Corollary 1 is complete.

APPENDIX B: ADDITIONAL MONTE CARLO RESULTS

This appendix contains the results of additional Monte Carlo simulations to assess the finite sample performance of
the proposed two-step procedure. Specifically, this set of simulations examines the impact of the break magnitude
and the sample size on test size for DGPs 2b-3b. These simulations are motivated by the observation in Table I
that the size distortions incurred by the two-step procedure for DGPs 2b–3b do not decrease as the sample size
increases.

J. Time Ser. Anal. 43: 219–237 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12609
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236 M. KEJRIWAL, P. PERRON, AND X. YU

Table B.1. Rejection rates of the one-step partial KP and two-step (TS) tests for DGP-2b, 3b as a function of the sample size
and break magnitude, 5% nominal level

Panel A: Δc = 1, Δ𝛿 = 0.4, with different T

T 60 120 180 240 300 360 480 600

DGP-2b KP 19.77 44.86 61.29 71.20 77.54 81.72 86.32 88.81

TS 5.77 9.12 10.03 9.29 8.44 7.77 7.27 6.92

TS1st 22.81 65.56 89.91 97.85 99.61 99.94 100 100

TS2nd 25.31 13.91 11.16 9.49 8.47 7.77 7.27 6.92

DGP-3b KP 5.87 11.14 18.85 27.10 34.55 41.29 52.32 60.16

TS 2.95 3.87 5.51 6.76 7.71 8.15 8.40 8.26

TS1st 8.54 15.75 29.72 44.54 56.91 66.55 79.63 86.87

TS2nd 34.58 24.55 18.53 15.17 13.55 12.25 10.55 9.51

Panel B: T = 120, with different break magnitude Δ𝛿 of the parameter not under test

Δ𝛿 0.1 0.2 0.3 0.4 0.5 1 1.5 2

DGP-2b KP 12.12 27.72 39.06 44.60 47.84 44.51 39.44 36.58

TS 3.16 5.82 7.81 9.01 9.88 8.96 8.10 7.82

TS1st 8.67 27.78 48.94 65.42 78.23 98.72 99.96 100

TS2nd 36.46 20.96 15.95 13.77 12.64 9.08 8.11 7.82

Δc 0.2 0.4 0.6 0.8 1 2 3 4

DGP-3b KP 3.29 4.27 5.87 8.31 11.21 26.36 33.64 35.26

TS 1.53 1.86 2.37 3.10 3.91 7.06 7.62 7.36

TS1st 2.85 4.18 6.48 10.42 15.73 57.18 85.56 96.32

TS2nd 53.65 44.38 36.50 29.76 24.87 12.34 8.90 7.64

Table B.1 presents the results. Panel A reports the rejection frequencies for T between 60 and 600 with the break
magnitude fixed. We include the first step, second step, and final rejection frequencies for the two-step procedure
to investigate the contribution of each to the final test outcome. The following patterns are worth noting. First, the
empirical size does not monotonically approach the nominal size (5%) as T increases, that is, it initially increases
and then decreases. Second, while the increase in the first step rejection frequencies reflects the expected increase in
power, the second step rejection frequencies decrease as T increases, reflecting the reduced estimation uncertainty
about the break date. The evolution of the final rejection rate (the product of the first and second stage rates) as a
function of T thus depends on the rate of increase in first stage power vis-a-vis the rate of reduction in the second
stage size.
Panel B explores the behavior of test size as a function of the break magnitude when T = 120. The results resemble
those in Panel A, with a hump-shaped pattern for the final rejection rate, caused by an increase in the first-stage
power accompanied by a reduction in sampling uncertainty about the break date, as the magnitude of the break
increases. Figure B.1 summarizes the results in Table B.1 graphically, plotting the first, second and final stage
rejection rates as a function of T for a given break size (Δc = 1,Δ𝛿 = 0.4) and as a function of break size for a
given sample size (T = 120).

wileyonlinelibrary.com/journal/jtsa © 2021 John Wiley & Sons Ltd J. Time Ser. Anal. 43: 219–237 (2022)
DOI: 10.1111/jtsa.12609

 14679892, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12609 by Fudan U

niversity, W
iley O

nline L
ibrary on [24/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TESTING PARTIAL PARAMETER STABILITY 237

T

0

10

20

30

40

50

60

70

80

90

R
ej

ec
tio

n 
ra

te
 (

%
)

T

0

10

20

30

40

50

60

70

80

90

100

R
ej

ec
tio

n 
ra

te
 (

%
)

c

0

10

20

30

40

50

60

70

80

90

100

R
ej

ec
tio

n 
ra

te
 (

%
)

0 100 200 300 400 500 6000 100 200 300 400 500 600

0 0.5 1 1.5 2 2.5 3 3.5 40 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

R
ej

ec
tio

n 
ra

te
 (

%
)

Figure B.1. Rejection rates of two-step test for DGP-2b and DGP-3b as a function of sample size/break magnitude
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