
Journal of Econometrics xxx (xxxx) xxx

m
s
(
(
i
t
p
(
(
t
t

t

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Indirect inference estimation of dynamic panel datamodels
Yong Bao a,∗, Xuewen Yu b

a Department of Economics, Purdue University, 403 W State St, West Lafayette, IN 47907, USA
b Department of Applied Economics, School of Management, Fudan University, China

a r t i c l e i n f o

Article history:
Received 29 July 2021
Received in revised form 13 September 2022
Accepted 18 September 2022
Available online xxxx

JEL classification:
C23
C13
C26

Keywords:
Dynamic panel
Indirect inference
Within-group estimator
Convergence

a b s t r a c t

This paper proposes an estimator for higher-order dynamic panel models based on
the idea of indirect inference by matching the simple within-group estimator with
its analytical approximate expectation. The resulting estimator is shown to be con-
sistent and asymptotically normal. For the special case of first-order dynamic panel,
the estimator yields numerically the same result from an existing procedure in the
literature, but the inference to follow differs and this paper examines the differences
and implications for hypothesis testing. Monte Carlo simulations show that the proposed
estimator is virtually unbiased, achieves usually lower root mean squared error than
competing estimators, and delivers very reliable empirical size across various parameter
configurations and error distributions. This new estimator is used to estimate the
convergence parameter in an inequality measure among 63 countries during 1985–
2015. It shows strong evidence of convergence over long test horizons but much weaker
evidence over a 5-year horizon for developing countries.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic panel (DP) models with fixed effects have been used extensively in applied microeconomics, development,
acroeconomics, and other disciplines of the social sciences. In the classical set-up of large N (the number of cross-
ectional units) and fixed T (the number of time periods), the simple within-group (WG) or least squares dummy variables
LSDV) estimator for the first-order dynamic panel (DP(1) henceforth) is well known to be inconsistent, see Nickell
1981). The (Gaussian) maximum likelihood estimator (MLE) is found in Anderson and Hsiao (1981) to be consistent
n most cases but is also sensitive to the assumptions on the initial conditions and the asymptotic plans.1 In light of
hese findings, Anderson and Hsiao (1981) proposed using the so-called instrumental variables (IV) to estimate dynamic
anels. Their seminal work inspired many influential publications in decades to follow, see, inter alia, Holtz-Eakin et al.
1988), Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995), Hahn (1997), Blundell and Bond
1998, 2000), Alvarez and Arellano (2003), Hahn et al. (2007), and Ashley and Sun (2016), and dynamic panels witnessed
heir widespread use in applied fields. Baltagi (2008) and Bun and Sarafidis (2015) provided comprehensive reviews on
his literature of estimation strategies based on IV and the generalized method of moments (GMM).

For one to be able to use the popular IV/GMM approach, two questions need to be answered. The first is regarding
he choice of IV or moment conditions to be used. One can use the lagged level, the first differenced variable, the lagged
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1 The literature of fixed-T dynamic panels based on the likelihood approach also includes the random effects estimators as considered by Blundell
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ifferenced variable, the long differenced variable, and so on, see Hsiao and Zhou (2017). There are also choices regarding
hich lags or differences to be used, as they are related to the quality of instruments. The second is regarding the number
f IV or moment conditions, even if the first question is already settled. In general, for a moderate T , there are many
nstruments available, even for the baseline DP(1). Ideally, one would like to use as many as possible to improve asymptotic
fficiency. But it has been documented that using more moments does not necessarily lead to better performance of the
esulting IV/GMM estimator in finite samples and the strategy of exploiting all the moment conditions for estimation is
ctually not recommended for panel data applications, see Kiviet (1995), Wansbeek and Bekker (1996), Judson and Owen
1999), Ziliak (1997), and Bun and Kiviet (2006).

In view of these challenges to use IV/GMM in dynamic panels, a different strand of literature emerged that focuses
xplicitly on correcting the bias of the simple WG estimator in DP(1), see Kiviet (1995), Bun and Kiviet (2001), Hahn
nd Kuersteiner (2002), Bun and Carree (2005, BC henceforth), Everaert and Pozzi (2007), and Gouriéroux et al. (2010),
mong others.2 Note that these works correct the bias by either using analytical approximate bias of the WG estimator,
r via the approach of simulations, or through bootstrapping. The latter two approaches can be numerically intensive and
his paper proposes an estimator by following the first approach of analytical bias approximation. The intuition behind
he proposed estimator in this paper is straightforward: it tries to match the WG estimator, which is inconsistent and yet
omputationally simple, with its analytical approximate expectation. The latter is a function of model parameters and thus
ne can build a feasible sample binding function that links model parameters, the sample data, and the WG estimator. In
urn, model parameters can be numerically solved from this sample binding function. The resulting estimator is named the
ndirect inference (II) estimator, largely in line with the spirit of Gouriéroux et al. (1993) and Smith (1993). Given that the
ppropriately recentered WG estimator is consistent, where the recentering term is based on the analytical approximate
xpectation, the resulting II estimator is necessarily consistent and its asymptotic distribution follows from the delta
ethod.
There are three major contributions of this paper. First, it focuses on the traditional large-N and finite-T framework and

considers higher-order dynamic panels, including DP(1) as a special case. The proposed estimator is based on the simple
least squares procedure, simulation free, and does not rely on instruments. In comparison with the GMM estimator, whose
performance depends crucially on the quality and quantity of instruments, the II estimator is straightforward to calculate
and is shown in simulations to possess very good finite-sample performance. In particular, it is virtually unbiased and
usually achieves higher estimation precision than competing estimators. Second, in contrast to the existing works, the
results derived in this paper do not rely on normality assumption on the idiosyncratic error term, nor some restrictive
assumption on the initial (latent) variable. The asymptotic variance of the II estimator is different from that existing in
the literature for DP(1) and this paper explains the differences and provides insights to the implications for hypothesis
testing. Third, the II estimator is asymptotically normal and the asymptotic variance can be consistently estimated once
the II estimator is available. Thus inference procedures can be easily implemented. Simulations show that the II-based
inference delivers very good size performance.

The plan of this paper is as follows. The next section contains the main results, starting with the classical set-up,
where a feasible binding function in terms of model parameters and the sample data is constructed and the asymptotic
distribution of the resulting estimator that solves for this function is derived. It also contains discussions over existing
results on the simple DP(1) and analyzes a special type of DP in convergence studies. Further, a robust II estimator
is proposed in the presence of time-series heteroskedasticity. Section 3 provides some simulations, where the new
estimator is found to possess good finite-sample properties, in comparison with existing estimators. Using the II estimator
developed in this paper, Section 4 contains an empirical study of convergence in inequality among 63 countries during
the period 1985–2015. It finds strong evidence of convergence over the longer 10-year, 15-year, and 20-year horizons
among all the countries but little evidence of convergence in developing counties in the shorter 5-year horizon. The last
section concludes. All technical details and proofs are provided in the appendix and additional results are collected in
supplementary appendices.

2. Main results

This section first focuses on the classical set-up of large panels with short time spans, where the idiosyncratic errors
are i.i.d. across time and individual units. The general case of higher-order dynamic panel model is considered. Then the
case of DP(1) is discussed and in comparison with existing results in the literature, some misleading points are clarified.
The general result simplifies for a special type of higher-order DP in convergence studies. In the presence of time-series
heteroskedasticity, a robust estimation strategy is proposed.

2 For higher-order dynamic panels, to the best of the authors’ knowledge, the literature is relatively scarce, see Bun (2003) that derived the
asymptotic distribution of the bias-corrected LSDV in higher-order dynamic panels under large T and general covariance structure, Lee (2012) that
tudied bias-corrected LSDV when the lag order is possibly misspecified under large N and large T , and De Vos et al. (2015) that proposed the
ootstrap approach to correcting the bias of LSDV. Chowdhury (1987) outlined a somewhat different approach, under which the bias of the least
quares estimator based on the differenced model was derived. A very recent reference is Alvarez and Arellano (2022) that proposed bias-correcting
he score function based on the likelihood approach.
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.1. Model specification and notation

The pth order dynamic panel model, DP(p) for short, with fixed effects and exogenous regressors considered in this
aper is

yit = αi + φ1yi,t−1 + · · · + φpyi,t−p + x′

itβ + uit , i = 1, . . . ,N, t = 1, . . . , T , (1)

where the dependent variable yit is related to its lagged values, up to order p, the unobserved individual-specific effect
αi, the k × 1 vector of exogenous variables xit , and an idiosyncratic disturbance term uit .3

Throughout, I r denotes the identity matrix of size r with the unit vector er,j as its jth column, j = 1, . . . , r , 1T is a
T ×1 vector consisting of 1’s, MT = IT − T−11T1′

T , ANT = IN ⊗MT , LT is a T × T strict lower triangular matrix with 1’s on
the first sub-diagonals and zero elsewhere, Or×s is an r × s matrix of zeros (Or for the case when r = s and 0r = Or×1),
and tr, ⊙, and ⊗ denote matrix trace, Hadamard (element-wise) product, and Kronecker product operators, respectively.
When there is no confusion from the context, matrix and vector dimension subscripts may be omitted. (So I , 1, e1, L,
M , and A are used to denote IT , 1T , eT ,1, LT , MT , and ANT , respectively, unless indicated otherwise. In particular, A is the
well-known within transformation matrix that wipes out the fixed effects.) The subscript 0 is used to signify the true
parameter value. When a term is denoted without its parameter argument, it means it is evaluated at the true parameter
value.

For each cross-sectional unit i = 1, . . . , n, let y i = (yi1, . . . , yiT )′, y i,−s = (yi,1−s, . . . , yi,T−s)′, s = 1, . . . , p,
Y i = (y i,−1, . . . , y i,−p), X i = (xi1, . . . , xiT )′, W i = (Y i,X i), and ui = (ui1, . . . , uiT )′. Stacking over i, one can put
y = (y ′

1, . . . , y
′

N )
′, y−s = (y ′

1,−s, . . . , y
′

N,−s)
′, s = 1, . . . , p, Y = (Y ′

1, . . . ,Y
′

N )
′

= (y−1, . . . , y−p), X = (X ′

1, . . . ,X
′

N )
′,

W = (Y ,X) = (W ′

1, . . . ,W
′

N )
′, u = (u′

1, . . . , u
′

N )
′, and α = (α1, . . . , αN )′. Note that the NT × p matrix Y collects all the

lagged observations on the outcome variable, vertically stacked across the T×pmatrices Y i, i = 1, . . . ,N , and equivalently,
horizontally stacked across the NT × 1 vectors y−s, s = 1, . . . , p. In matrix notation, (1) can be written as

y = (IN ⊗ 1T )α + Wθ + u, (2)

where θ = (φ′,β′)′ and φ = (φ1, . . . , φp)′. Let m = p+k denote the dimension of the parameter vector θ and n = N(T −1)
be the number of observations used in the ordinary least squares (OLS) regression for the WG estimator when the fixed
effects are first wiped out.

2.2. Assumptions

The following conditions regarding the error terms, fixed effects, and initial values are assumed.

Assumption 1. The series of error terms uit , i = 1, . . . ,N , t = 1, . . . , T , is i.i.d. across time and individuals, E(uit ) = 0,
Var(uit ) = σ 2, and has finite moments up to the fourth order.

Assumption 2. The series of fixed effects αi, i = 1, . . . ,N , is i.i.d. across individuals with finite moments up to the fourth
order.

Assumption 3. The error terms uit and fixed effects αi are independent for any i = 1, . . . ,N , t = 1, . . . , T .

Assumption 4. The regressors X , when present, are either fixed or random and N−1X ′AX converges (in probability) to a
positive definite matrix as N → ∞. When they are fixed, each one of them is O(1). When they are random: (i) they are
strictly exogenous with respect to error terms and i.i.d. across i; (ii) each one of them is OP (1) with finite moments up to
the fourth order; (ii) E(αr1

i xr2it,s) = O(1) and Cov(αr1
i xr2it,si , α

r1
j xr2jt,sj ) = 0, r1 + r2 ≤ 4, r1 ≥ 0, r2 ≥ 0, i ̸= j, i, j = 1, . . . ,N ,

s, si, sj = 1, . . . , k.

Assumption 5. The initial values yi,−s, i = 1, . . . ,N , s = 0, 1, . . . , p, are either fixed or random. When they are fixed,
each one of them is O(1). When they are random: (i) each one of them is OP (1) with finite moments up to the fourth
order; (ii) E(αr1

i yr2i,−s) = O(1) and Cov(αr1
i yr2i,−s, α

r1
j yr2j,−s) = 0, r1 + r2 ≤ 4, r1 ≥ 0, r2 ≥ 0, i ̸= j, i, j = 1, . . . ,N , s = 0, . . . , p;

(iii) Cov(yi,−s, uit ) = 0, s = 0, . . . , p, t = 1, . . . , T , i = 1, . . . ,N .

Assumptions 1–3 are classical ones regarding the idiosyncratic errors and fixed effects. Their distributions are
unspecified, so long as their moments up to the fourth order exist. Assumption 4 does not rule out possible correlation
between the exogenous x variables and the fixed effects. Assumption 5 does not specify how the initial observations are
generated, except conditions regarding how they may be correlated with the fixed effects and idiosyncratic errors. In
Assumption 5, (iii) is most natural and (ii) does allow for possible correlation between the initial condition and fixed

3 In this paper, unless stated otherwise, it is assumed that the pre-time/initial observations yi0, . . . , yi,−p are available so that the effective sample
size (over time) is T + p. Otherwise, all the results should be modified with T replaced by T − p in various places. Sections 2.5, 3.5 and 4 discuss
the scenario when the pre-time observations are not available in convergence studies.
3
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ffects for each unit i, but it rules out possible cross-sectional correlation among (products of) them. No assumption has
een made regarding the parameter vector φ. In other words, it is not necessary to assume that the DP(p) in this paper is
ynamically stable. This is innocuous, given that the focus in this paper is on the traditional panels of short time spans.

.3. The general case

The WG estimator of θ0 is given by

θ̂ = (W ′AW )−1W ′Ay = θ0 + (W ′AW )−1W ′Au. (3)

If one allows T → ∞, from Supplementary Appendices B and C, T−ηW ′AW = OP (N) and T−(η−1)W ′Au = OP (N), where
η = 1 when the panel is dynamically stable, it follows that

plim
T→∞

(θ̂ − θ0) =

(
plim
T→∞

1
N
T−ηW ′AW

)−1 (
plim
T→∞

1
T

1
N
T−(η−1)W ′Au

)
= 0, (4)

indicating that θ̂ is in fact consistent when T → ∞.
In this paper, the focus is on the case when T is finite and consider the asymptotic distribution of an estima-

tor that is based on θ̂ when N → ∞.4 To handle the bias, a popular approach is to recenter θ̂ by δ = T−1

(plimN→∞ N−1T−ηW ′AW )−1(plimN→∞ N−1T−(η−1)W ′Au) (or T−1
[N−1T−ηE(W ′AW )]−1

[N−1T−(η−1)E(W ′Au)]), namely, its
asymptotic bias. The appendix shows that

√
N(θ̂ − θ0 − δ)

d
→ N(0,∆), where ∆ = limN→∞ N[E(W ′AW )]−1Var(W ′Au −

′AWδ)[E(W ′AW )]−1. While E(W ′Au) is straightforward to derive (see Supplementary Appendix C), given by

E(W ′Au) =

⎛⎜⎜⎜⎜⎝
Nσ 2tr(MΦ−1

p L)
...

Nσ 2tr(MΦ−1
p Lp)

0k

⎞⎟⎟⎟⎟⎠ = −
Nσ 2

T

⎛⎜⎜⎜⎜⎝
1′Φ−1

p L1
...

1′Φ−1
p Lp1
0k

⎞⎟⎟⎟⎟⎠ ≡ −
Nσ 2

T
r, (5)

here r = (r ′
p, 0′

k)
′, rp = (1′Φ−1

p L1, . . . , 1′Φ−1
p Lp1)′, Φp = Φp(φ0), and Φp(φ) = I −φ1L −· · ·−φpLp is a T × T matrix, a

aunting task in practice is to derive E(W ′AW ). Given that N−1W ′AW is consistent for N−1E(W ′AW ), a second choice is
to use dN = dN (φ0, σ

2,W ) = (W ′AW )−1E(W ′Au) as the recentering term. This recentering term dN is in terms of model
parameters as well as the observable data W , standing in contrast to the asymptotic bias δ. (And thus the subscript N
is added explicitly to emphasize its dependence on the sample data. For notational convenience, in what follows, if a
term has the subscript N , it means it is a function of the sample data W and W is suppressed.) The appendix shows that
√
N(θ̂N −θ0 −dN )

d
→ N(0,Ω ), where Ω = limN→∞ N[E(W ′AW )]−1Var(W ′Au)[E(W ′AW )]−1. In spite of dN being random,

there are three advantages of using dN as the recentering term. (i) The resulting recentered estimator has a simpler
asymptotic variance matrix Ω compared with ∆, whereas the latter involves additionally the (limits of properly scaled)
ariance of W ′AW and covariance of W ′Au and W ′AW . (ii) The asymptotic bias δ involves either plimN→∞N−1W ′AW ,
hich is unknown, or N−1E(W ′AW ), which depends on θ0, the initial conditions (y1,−s, . . . , yN,−s), s = 0, . . . , p − 1, and

the fixed effects α (see Supplementary Appendix B). In contrast, dN is directly a function of the observable sample data
((W ′AW )−1) and parameter vector φ0 (and σ 2, both appearing in E(W ′Au)). (iii) Since dN involves only the observable
data and model parameters, it facilitates the construction of a new estimator that aims to correct the inconsistency of
the WG estimator. If one is to design a bias-correction procedure based on the asymptotic bias, one may be tempted to
replace plimN→∞N−1W ′AW or N−1E(W ′AW ) in δ with the sample average N−1W ′AW . This is exactly the approach taken
by BC and is of the same spirit of the procedure in this paper.

The estimator to be introduced in this paper is to invert a function that is related to the recentering term dN , given
the sample data and the WG estimator.5 Note that β0 does not appear directly in this recentering term. There is still the
nuisance parameter σ 2 appearing in dN .6 A natural choice is to replace it with u′Au/n = (y − Wθ0)′A(y − Wθ0)/n and
define

d†
N = d†

N (θ0,W ) = −(y − Wθ0)′A(y − Wθ0)(W ′AW )−1h, (6)

where h = r/[T (T − 1)].

4 Since T is finite, the orders of various terms to follow are expressed in terms of N . When a normalization constant T−η is used, it intends
o emphasize that the relevant terms are proportional to T η . When there is a unit root, different blocks of W ′AW and W ′Au will have different
normalization constants. To facilitate presentation, the normalization constants under the unit root case are not discussed explicitly and in what
follows it is assumed that the panel is dynamically stable (unless stated otherwise), but this does not affect the analysis in this paper when T is
finite.
5 Using the partitioned inverse formula, one may follow the notation in BC to rewrite the recentering term as dN = −σ 2(Ip,−Ξ̂

′

)′Σ̂
−1
Y |X rp/[T (T−1)],

here Σ̂Y |X = Σ̂YY (Ip − Ψ̂ ), Ξ̂ = Σ̂
−1
XX Σ̂XY , Ψ̂ = Σ̂

−1
YY Σ̂

′

XY Σ̂
−1
XX Σ̂XY , Σ̂XX = X ′AX/n, Σ̂YY = Y ′AY/n, and Σ̂XY = X ′AY/n.

6 2 ˆ
′ 2 ′
One may also work out explicitly the asymptotic bias of σ̂ that is based on the LSDV residuals and augment this to dN to recenter (θ , σ̂ ) .

4
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With the recentering term d†
N in (6) as a function of θ0 (as well as the sample data W ), one can define the sample

binding function, given the sample data W , for any θ, as

bN (θ) = θ + d†
N (θ) (7)

and consider the II estimator that inverts this function, namely,

θ̌ = b−1
N (θ̂). (8)

Intuitively, the II estimator defined as such tries to match the biased WG estimator θ̂ from the observed sample data to
its expected value, at least approximately. Typically, the expectation may be approximated via the method of simulations,
in line with the original spirit of Gouriéroux et al. (1993) and Smith (1993).7 The probability limit of bN (θ), namely, the
binding function, is plimN→∞ bN (θ) ≡ b(θ) = θ + δ(θ). Let G(θ) = ∂b(θ)/∂θ′

= Im + ∂δ(θ)/∂θ′ be the Jacobian. For (local)
identification, one needs to impose some condition on this Jacobian.

Theorem 1. Under Assumptions 1 to 5 and that G(θ) is nonsingular in a neighborhood of θ0, θ̌ based on the sample binding
function (7) has the following asymptotic distribution:

√
N(θ̌ − θ0)

d
→ N(0,V II ), (9)

where V II = G−1VG−1′, G = G(θ0), and

V = lim
N→∞

N[E(W ′AW )]−1Var(W ′Au + u′Auh)[E(W ′AW )]−1.

Global identification, namely, nonsingularity of G(θ) (or invertibility of the binding function) is extremely difficult,
if not impossible, to verify, given that neither δ(θ) nor G(θ) has a tractable analytical form.8 Note that given δ(θ0) =

plimN→∞ θ̂ − θ0 and plimN→∞ bN (θ0) = plimN→∞ θ̂, one can interpret G(θ0) as ∂ plimN→∞ θ̂/∂θ evaluated at θ0. So the
nonsingularity of G(θ) in a neighborhood of θ0 is equivalent to assuming that there is a one-to-one mapping from θ

to plimN→∞ θ̂(θ) in this neighborhood. For a typical consistent estimator θ̃, namely, plimN→∞ θ̃ = θ0, this mapping is
obviously one-to-one. For the inconsistent WG estimator θ̂ with plimN→∞ θ̂(θ) = θ + δ(θ), where Tδ(θ) = O(1) for θ in
this neighborhood, it is likely that θ dominates δ(θ) in magnitude for a panel with moderate T and thus the mapping is
likely to be one-to-one.

Gospodinov et al. (2017) considered dynamic models with measurement errors. In their framework, the binding
function is built on the auxiliary statistics consisting of the OLS estimator, sample moments of OLS residuals, and cross
sample moments of regressors and residuals, whereas the parameter vector includes additionally variance of the structural
error and variance and auto-covariances of the measurement error. For the first-order distributed lag model, invertibility of
the mapping from the parameter vector to the binding function is verifiable (see their Lemma 1). For higher-order models,
invertibility of the mapping is not verifiable and Gospodinov et al. (2017) suggested using simulations to approximate
the binding function and proposed a novel simulation algorithm.9 They recommended checking numerically invertibility
of the approximated binding function from simulations. The sample binding function bN (θ) in this paper is neither a pure
auxiliary statistic nor the binding function in the strict sense of a probability limit. If one uses simulations and defines, say,
θ̂
S
(θ) = S−1∑S

s=1 θ̂
s
(θ), where θ̂

s
(θ) is the WG estimator from the sth simulated sample with parameter θ, s = 1, . . . , S,

then for a given N , θ̂
S
(θ) = θ+δ(θ)+OP (N−1/2), no matter how large S is. The requirement is that plimN→∞ θ̂

S
(θ) = θ+δ(θ)

so that the auxiliary statistic from the simulated data provides a consistent functional estimator of the binding function.
Instead of using θ̂

S
(θ), this paper uses the sample binding function bN (θ), which is also a consistent functional estimator

of the binding function.
At a given θ, the sample Jacobian is

∂bN (θ)
∂θ′

= Im + 2(W ′AW )−1h(y − Wθ)′AW

− (y − Wθ)′A(y − Wθ)(W ′AW )−1H(θ)

≡ GN (θ), (10)

here

H(θ) =
∂h(θ)
∂θ′

=
1

T (T − 1)

[
R(φ) Op×k

Ok×p Ok

]
,

7 There are also nonparametric sieves simulation estimators that do not require distributional assumptions on the pseudo errors in simulations (e.g.,
Forneron, 2020, and references therein).
8 The authors thank an associate editor and the referees for raising the issue of invertibility of the binding function.
9 Forneron and Ng (2018) also discussed other simulation-based methods and provided an example of applying them to the first-order dynamic

panel model.
5
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nd R(φ) = ∂rp(φ)/∂φ′ is a p × p matrix with 1′Φ−1
p (φ)L j2Φ−1

p (φ)L j11 in its (j1, j2) position, j1, j2 = 1, . . . , p. So even
hough in general one cannot check nonsingularity of G , one can always check numerically the identification condition
or a given sample W by examining the determinant of GN (θ) over a grid of values of θ.

To make inference feasible in practice, one needs to estimate V and G in V II = G−1VG−1′. The estimation of V is more
complicated, even though G can be naturally replaced by Ĝ = GN (θ̌).10 One may replace N−1E(W ′AW ) in V by N−1W ′AW .
Supplementary Appendix D shows that Var(W ′Au + u′Auh) = Var(W ′Au) − σ 4N[2(T − 1) + γ2T−1(T − 1)2]hh′ (where
γ2 is the excess kurtosis of uit ) and Supplementary Appendix C discusses the various terms appearing in Var(W ′Au).
Specifically, N−1Var(W ′Au + u′Auh) involves, in addition to θ0, the fixed effects and the possible interactions between
the fixed effects and initial conditions, as well as the skewness (γ1) and kurtosis (γ2) of uit . (The variance and covariance
matrices pertaining to the initial conditions, when they are not assumed to be fixed, drop out in the asymptotic variance
when scaled by N−1.) Thus simply replacing θ0 by θ̌ does not yield a meaningful estimator. Instead, one may use

V̂ = N(W ′AW )−1

(
N∑
i=1

v̂iv̂
′

i

)
(W ′AW )−1, (11)

where

v̂i = W ′

iM(y i − W iθ̌) + (y i − W iθ̌)′M(y i − W iθ̌)ĥ, (12)

in which ĥ = r̂/[T (T − 1)], r̂ = (rp(φ̌)′, 0′

k)
′. (Recall that M = IT − T−11T1′

T .) In the end, a consistent estimator of V II is

V̂ II = Ĝ
−1

V̂ Ĝ
−1′
. (13)

One may wonder what will happen to the II estimator when in fact T is large. From d†
N = −(y − Wθ0)′A(y −

Wθ0)(W ′AW )−1h, where (y − Wθ0)′A(y − Wθ0) = OP (NT ), W ′AW = OP (NT ) when the process is dynamically stable
or has its leading block being OP (NT 3) under unit root, h = r/[T (T − 1)] = O(T−1) when the process is dynamically
stable or O(1) when it contains a unit root, one has plimT→∞ d†

N = 0, namely, the II estimator tries to correct the
consistent WG estimator. As Hahn and Kuersteiner (2002) pointed out, the consistent WG estimator may still possess
an asymptotic bias, depending on the relative rates of increase of T and N . In practice, regardless of T , one can always
apply the II procedure and it yields a consistent estimator. When there is no X and if one assumes stationarity, the
correction term from the II procedure for DP(1) is −(1 + φ0)/(T − 1) (namely, the leading term of the Nickel bias, see
18) in Section 2.4.2 to follow). Thus, the resulting II estimator becomes [(T − 1)φ̂ + 1]/(T − 2). In contrast, Hahn and
uersteiner (2002) corrected the bias by directly subtracting from φ̂ the estimated bias to arrive at [(T + 1)φ̂ + 1]/T .11
hen there is a unit root, a direct bias-correction procedure as in Hahn and Kuersteiner (2002) is not available, since

he asymptotic bias involves the fixed effects (see their Theorem 5), but the II procedure in this paper can still be used.
f course, one would expect that the asymptotic distribution as given by (9) is not valid. If there is no unit root, one
an show that H = ∂h(θ0)/∂θ′

= O(T−1). This, together with W ′Au = O(N) + OP (
√
NT ) and W ′AW = OP (NT ), implies

that plimT→∞GN = Im. Moreover, from Var(W ′Au + u′Auh) = Var(W ′Au) − σ 4N[2(T − 1) + γ2T−1(T − 1)2]hh′ (see
upplementary Appendix D), one has limT→∞(NT )−1Var(W ′Au+u′Auh) = limT→∞(NT )−1Var(W ′Au). After some algebra,
ne can show that limT→∞(NT )−1Var(W ′Au) = σ 2plimT→∞(NT )−1W ′AW . Therefore, the asymptotic distribution result
ecomes

√
NT (θ̌ − θ0)

d
→ N(0, σ 2(plimT→∞(NT )−1W ′AW )−1) if there is no unit root. As shown in Hahn and Kuersteiner

(2002) and Bai (2013), if the errors are i.i.d. Gaussian, this asymptotic variance equals the lower variance bound. In
other words, the II estimator is most efficient under the double asymptotic regime. Importantly, the II estimator does
not involve an asymptotic bias and one does not need to apply bias-correction as in Hahn and Kuersteiner (2002), nor
does it involve simulations as in Gouriéroux et al. (2010). For the special case of DP(1) with no X , one can show that
σ 2(plimT→∞(NT )−1W ′AW )−1

= 1 − φ2
0 , which is also the variance result from Hahn and Kuersteiner (2002) for their

bias-corrected estimator and Gouriéroux et al. (2010) for their simulation-based II estimator.12

2.4. The special case of DP(1)

When p = 1 in (1), with W = (y−1,X) and θ = (φ,β′)′, one has

E(W ′Au) = −
Nσ 2

T

(
1′(I − φ0L)−1L1

0k

)
= −

Nσ 2

T
1′(I − φ0L)−1L1ek+1,1, (14)

10 Similar to DP(1) considered in BC, the term (y − W θ̌)′AW that appears in Ĝ can be simplified as ((y − W θ̌)′AY , 0′

k).
11 Obviously, under large T , they are asymptotically equivalent. In finite samples, the bias-corrected estimator from Hahn and Kuersteiner (2002)
hould display a slightly smaller root mean squared error than the II estimator, see Table 3 in Section 3.2 for Monte Carlo evidence.
12 The authors thank a referee for suggesting this line of discussion regarding large T and the issue of efficiency. When there is a unit root, the
erivation is more complicated and is left for future research. Under large N and finite T , the issue of efficiency of the II estimator is more subtle.
rom V II = G−1VG−1′ , where V is the asymptotic variance of

√
N(θ̂N − θ0 − d†

N ) and G can be interpreted as ∂ plimN→∞ θ̂/∂θ evaluated at θ0 , one
an follow the interpretation in Gouriéroux et al. (2010) (see their Eq. (16)) that the II estimator should inherit some of the ‘‘efficiency’’ properties
f the bias-corrected estimator θ̂ − θ − d† .
N 0 N
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here 1′(I − φ0L)−1L1 = T/(1− φ0)− (1− φT
0 )/(1− φ0)2 when the panel is dynamically stable and T (T − 1)/2 if it has a

nit root. Correspondingly, the recentering term, with σ 2 replaced by u′Au/n = (y − Wθ0)′A(y − Wθ0)/n, is defined as

d†
N = −h(y − Wθ0)′A(y − Wθ0)(W ′AW )−1ek+1,1, (15)

here h = h(φ0), h(φ) = 1′(I − φL)−1L1/[T (T − 1)]. The sample Jacobian from the sample binding function bN (θ) =

θ + d†
N (θ) is then

GN (θ) = Ik+1 + 2h(W ′AW )−1ek+1,1(y − Wθ)′AW

− (y − Wθ)′A(y − Wθ)(W ′AW )−1
[
H(φ) 0′

k
0k Ok

]
,

where H(φ) = ∂h(φ)/∂φ = 1′(I − φL)−1L(I − φL)−1L1/[T (T − 1)]. Theorem 1 carries through with V
= limN→∞ N[E(W ′AW )]−1Var(W ′Au + hu′Auek+1,1)[E(W ′AW )]−1.

2.4.1. In relation to Bun and Carree (2005)
BC used δ = (plimN→∞N−1W ′AW )−1(plimN→∞N−1W ′Au) as the recentering vector, not dN = (W ′AW )−1E(W ′Au)

as in this paper. The asymptotic variance of the recentered WG estimator, as well as that of the resulting II estimator,
depends on the recentering vector used. In practice, since the recentering vector δ involves, in addition to θ0 and σ 2, the
unknown plimN→∞N−1W ′AW , BC suggested using its sample analogue. When σ 2 in δ is also replaced by u′Au/n, the
recentering vector effectively becomes d†

N in this paper and the bias-correction procedure proposed in BC is in fact the
same as the II procedure. However, their asymptotic variance expression is not stated correctly. If one uses the (infeasible)
recentering quantity δ, then the asymptotic variance of

√
N(θ̂ −θ0 −δ) should be ∆, not their V X ; if one uses the feasible

recentering quantity d†
N , then the asymptotic variance of

√
N(θ̂ − θ0 − d†

N ) is V . The resulting bias-corrected estimator θ̌

has its asymptotic variance V II = G−1VG−1′, not V BC = G−1V XG−1′ as in BC. Thus, the standard errors may be different
from those from BC, because of (i) the initial latent variable, (ii) the (non-normal) distribution of uit , and (iii) the estimated
error variance in the recentering term. Note that (i) and (ii) give rise to different expressions of Var(W ′Au) (one under
the general set-up in this paper and one under normality and the assumption on the initial latent variable in BC) and
(iii) is related to the usage of Var(W ′Au + hu′Auek+1,1) = Var(W ′Au) − h2σ 4N

[
2(T − 1) + γ2T−1(T − 1)2

]
ek+1,1e′

k+1,1
see Supplementary Appendix E.1) versus Var(W ′Au) in the sandwich form of the variance formula. In practice, the three
actors may interact with each other and one may not have a clear-cut idea of their composite effect on the standard
rrors.
To better understand how the differences would affect the inference procedures, one can compare carefully the meat

arts of G−1VG−1′ and G−1V XG−1′, namely, V in this paper and V X in BC. Note that V and V X are also constructed in
sandwich forms with the corresponding meat parts Var(W ′Au + hu′Auek+1,1) ≡ V 0,II and Var(W ′Au) ≡ V 0,BC (which
is σ 2E(W ′AW )+Nσ 4tr(MCMC )ek+1,1e′

k+1,1 under normality and the initial latent variable condition), respectively, while
sharing the same bread part [E(W ′AW )]−1. From (E.4), (E.6), and (E.7) in Supplementary Appendix E.1, one has

V 0,II = V 0,BC

− 2h2σ 4N(T − 1)ek+1,1e′

k+1,1

+ σ 2E[(Mf ỹ0 + MC1)′(Mf ỹ0 + MC1)]ek+1,1e′

k+1,1

+ σ 3γ1

{
W

′

[1N ⊗ MCdg(MC )]e′

k+1,1 + ek+1,1[1N ⊗ MCdg(MC )]W
}

+ σ 4Nγ2

[
tr(MC ⊙ MC ) −

h2(T − 1)2

T

]
ek+1,1e′

k+1,1, (16)

here C = Φ−1
1 L, f = Φ−1

1 e1, W = E(W ), ỹ0 = y0 − E(y0), y0 = (y1,0, . . . , yN,0)′ collects the initial observations, and
dg(·) collects in order the diagonal elements of its argument as a column vector.

First, suppose one assumes normality and also the initial observations are fixed (yi0 = αi/(1 − φ0)), then V 0,II =

V 0,BC −2h2σ 4N(T −1)ek+1,1e′

k+1,1 and the difference in V 0,II and V 0,BC is solely related to (iii), namely, whether the effect
of the estimated error variance in the recentering term is taken into account. Since 2h2σ 4N(T − 1) > 0 holds for all
T ≥ 2, one would expect that the variance of φ̌ is to be over-estimated by BC and the resulting t-test may be under-sized.
Further, the degree of variance over-estimation increases in h. Section 3 provides simulation evidence to support this
aspect of the difference between V 0,II and V 0,BC .

Second, consider the effects of the error distribution. Fixing the initial observations, suppose γ1 = 0 and γ2 ̸= 0,
namely, the distribution is symmetric and may have thinner or fatter tails than a normal distribution. Supplementary
Appendix E.3 shows that tr(MC ⊙MC )− h2(T − 1)2/T is indeed positive for all φ0 ∈ (−1, 1]. Therefore, a negative γ2 will
ggravate the over-estimation of variance by BC while a positive γ2 will mitigate this problem. Furthermore, if the error
urtosis is high enough to offset the negative part −2h2σ 4N(T − 1), then BC may start to under estimate the variance of

ˇ . This is confirmed through simulations in Section 3. One may also wonder about the case of γ = 0 and γ ̸= 0. Now
2 1
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he magnitude of the term associated with γ1 depends on the quadratic form in W , whose sign is indeterminate, so its
verall effect is infeasible to determine.
Third, suppose the error term is normally distributed and consider the possible effects of the initial latent variable.

bviously, σ 2E[(Mf ỹ0+MC1)′(Mf ỹ0+MC1)] is non-negative. BC fixed this initial condition by assuming ỹ0 = (1−φ0)−1α̃
(where α̃ = α−E(α)), and since (1−φ0)−1Mf + MC1 = 0, this part reduces to 0 (see Supplementary Appendix E.1 for more
details). Consequently, one would expect that any other initial conditions would result in the V 0 part of the variance being
under-estimated by BC. Its overall effect is not clear though given that it also has impact on the bread part [E(W ′AW )]−1.

Finally, one needs to keep in mind that while V 0,BC can be estimated by a plug-in method, it is advised that V 0,II not be
estimated by such a method, due to the additional complications in estimating the skewness, kurtosis, and the relevant
terms pertaining to the initial conditions (when they are not assumed to be fixed) and the unobservable fixed effects α.
Instead, one can use the White-type estimator, see (11). So in the end, when one attempts to compare inferences using the
estimated V II and V BC , a direct conclusion is in general not feasible given that one cannot disentangle the aforementioned
three factors and also that they may be based on different estimation methods. Nevertheless, the analysis here may help
one understand the possible causes of the difference if one is able to fix some aspects of the model specification.

2.4.2. In relation to Nickell (1981)
When there are no exogenous regressors present, namely,

yit = φyit−1 + αi + uit , i = 1, . . . ,N, t = 1, . . . , T ,

Nickell (1981) derived the asymptotic bias analytically under the stationarity assumption such that

yi0 =
αi

1 − φ0
+

ui0√
1 − φ2

0

, |φ0| < 1. (17)

he asymptotic bias, following the notation in the previous subsection, is given by

δ =
E(y ′

−1Au)
E(y ′

−1Ay−1)

= −
(1 + φ0)
T − 1

[
1 −

1 − φT
0

T (1 − φ0)

]{
1 −

2φ0

(T − 1)(1 − φ0)

[
1 −

1 − φT
0

T (1 − φ0)

]}−1

, (18)

here E(y ′

−1Au) and E(y ′

−1Ay−1) (under the stationarity assumption) are given by (E.8) and (E.14), respectively, in
upplementary Appendix E.2.13 A striking feature of this asymptotic bias is that it is solely a function of the true parameter
0 (and T ), independent of the variance and distribution of the error term. The recentered WG estimator has the following
symptotic distribution:

√
N(φ̂ − φ0 − δ)

d
→

N
(
0, lim

N→∞

N[E(y ′

−1Ay−1)]
−2

[Var(y ′

−1Au) + δ2Var(y ′

−1Ay−1) − 2δCov(y ′

−1Au, y
′

−1Ay−1)]
)
,

where Var(y ′

−1Au), Var(y ′

−1Ay−1), and Cov(y ′

−1Au, y
′

−1Ay−1) are given by (E.15), (E.16), and (E.17), respectively, in
Supplementary Appendix E.2.

Without the stationarity condition (17), E(y ′

−1Ay−1) depends on the initial condition, the unobservable individual
effects, and the error variance. Following the derivations previously, one may define

dN =
E(y ′

−1Au)
y ′

−1Ay−1
= −

N(T − 1)hσ 2

y ′

−1Ay−1
, d†

N = −
h(y − φ0y−1)′A(y − φ0y−1)

y ′

−1Ay−1
, (19)

with the resulting sample binding function bN (φ) = φ + d†
N (φ) and the associated II estimator φ̌ = b−1

N (φ̂).
Proceeding similarly as before, one has

√
N(φ̂ − φ0 − dN )

d
→ N

(
0, lim

N→∞

NVar(y ′

−1Au)
[E(y ′

−1Ay−1)]2

)
, (20)

√
N(φ̂ − φ0 − d†

N )
d

→ N
(
0, lim

N→∞

N[Var(y ′

−1Au) − h2Var(u′Au)]
[E(y ′

−1Ay−1)]2

)
, (21)

√
N(φ̌ − φ0)

d
→ N

(
0, lim

N→∞

N[Var(y ′

−1Au) − h2Var(u′Au)]
g2[E(y ′

−1Ay−1)]2

)
, (22)

13 Nickell (1981) further assumed that the error terms are random drawings from a normal distribution in his brief derivations, though in his
footnote 7 he mentioned that his analysis of the bias does not depend on the normality assumption. It is not clear exactly how he derived his result
independent of the normality assumption.
8
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here E(y ′

−1Ay−1) is given by (E.9), Var(y ′

−1Au) by (E.10) in Supplementary Appendix E.2, Var(u′Au) by (D.1) in
Supplementary Appendix D, and

g = plim
N→∞

[
1 −

H(y − φ0y−1)′A(y − φ0y−1)
y ′

−1Ay−1
+

2hy ′

−1A(y − φ0y−1)
y ′

−1Ay−1

]
. (23)

.5. Dynamic panel in convergence studies

Caselli et al. (1996) suggested the following dynamic panel model in convergence studies,

yit = αi + φyi,t−τ + uit , (24)

here yit is some measure of income distribution, say, the Gini coefficient (in terms of deviation from period mean), and
≥ 2 is the time horizon over which one wants to test convergence. (For convenience, (24) is called DP-τ henceforth.)
hen φ − 1 < 0, it signals (beta-) convergence in income distribution. Caselli et al. (1996) took a τ th-order difference

pproach and proposed using the GMM estimator based on the differenced model. Bao and Dhongde (2009) instead
onsidered the simple OLS estimator based on a first-order difference (OLS1 for short). If one views (24) as a special
ase of (1), then the previous results follow directly.
Let Φ = I − φ0Lτ and C τ = Φ−1Lτ . One can check that C τ is a strict lower triangular matrix with φs−1

0 in its (s, τ )th
ub-diagonal position, s = 1, . . . , j, where j = ⌊(T − 1)/τ⌋. Then one can write (see (A.1) from Supplementary Appendix
)

y−τ = (IN ⊗ C τ )u + (IN ⊗ C τ1)α +

τ−1∑
s=0

(IN ⊗ C τ−1−se1)y−s,

here y−s = (y1,−s, . . . , yN,−s)′. It follows that

E(y ′

−τAu) = Nσ 2tr(MΦ−1Lτ ), (25)

here, when |φ0| ̸= 1,

tr(MΦ−1Lτ ) = −
1
T

[
T (1 − φ

j
0)

1 − φ0
+

jτφj
0

1 − φ0
−
τ (1 − φ

j
0)

(1 − φ0)2

]
.

Correspondingly, the recentering quantity and its feasible version are

dN =
E(y ′

−τAu)
y ′

−τAy−τ

= −
N(T − 1)hσ 2

y ′
−τAy−τ

, d†
N = −

h(y − φ0y−τ )′A(y − φ0y−τ )
y ′

−τAy−τ

,

where h is now defined as h = tr(MΦ−1Lτ )/[T (T − 1)]. The associated II estimator φ̌ = b−1
N (φ̂) is defined from the

sample binding function bN (φ) = φ+d†
N (φ). Proceeding similarly as before, one has the asymptotic distribution results as

in (20)–(22) with y−τ replacing y−1 (including that in g), where E(y ′
−τAy−τ ), Var(y ′

−τAu), and Cov(y ′
−τAu, u′Au) are of the

same expressions as (E.9), (E.10), and (E.13) in Supplementary Appendix E.2, respectively, with C τ replacing C everywhere,
and H = tr(MΦ−1LτΦ−1Lτ )/[T (T − 1)].

On many occasions, one may be interested in the question of convergence over a long time horizon, under which T
and τ are of comparable size, without assuming availability of the pre-time observations. (Now the effective sample size
is T instead of T + τ , cf. Footnote 3.) For example, given a panel of cross-country observations over 10 years, one may ask
whether the inequality measures in these countries under study converge over a horizon of 8 years. In general, the τ th-
rder difference GMM approach of Caselli et al. (1996) does not work given that no data is available for one to take the τ th
rder difference when τ and T are of comparable size. First consider T = τ+1, namely, yi,τ+1 = αi+φyi,1+ui,τ+1. Without

any pre-time observations, none of the estimation strategies will work, given that no IV is available and one cannot wipe
out the individual effects αi in WG or OLS1. When T = τ+2, surprisingly, the WG, OLS1, and II procedures yield the same
consistent estimator. The intuition is as follows. For the WG procedure, one is actually regressing yi,τ+2−(yi,τ+2+yi,τ+1)/2
on yi,2 − (yi,2 + yi,1)/2 and for the OLS1 estimator, one is regressing yi,τ+2 − yi,τ+1 on yi,2 − yi,1, which is essentially the
same. According to (25), with T replaced by T − τ = 2, j = ⌊(2 − 1)/τ⌋ = 0 and thus E(y ′

−τAu) = 0. (It should be
noted that their standard errors may still be different since their variances are constructed differently.) One can imagine
that when II tries to bias-correct the consistent WG estimator, it may perform worse than the WG estimator in finite
samples. For the differenced equation, namely, yi,τ+2 − yi,τ+1 = φ(yi,2 − yi,1) + ui,τ+2 − ui,τ+1, yi1 and yi2 are legitimate
instruments if one wants to use the GMM. When T = τ + 3 and if τ > 2, then j = ⌊(3 − 1)/τ⌋ = 0 and both WG and
II yield the same consistent estimator. Again, the II procedure may be redundant. For the differenced equation, namely,
yi,t − yi,t−1 = φ(yi,t−τ − yi,t−τ−1)+ ui,t − ui,t−1, t = τ + 3, τ + 2, one can use yi1 and yi2 as instruments for t = τ + 2 and
yi1, yi2, and yi3 as instruments for t = τ + 3 in the GMM framework.14 One can continue this analysis and depending on

14 If one uses the variable in level in regression, then the differenced lagged variables as IV will also work, see Arellano and Bover (1995).
9
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he magnitudes of T − τ and τ , the WG estimator may be consistent and there are many different choices of instruments
or the GMM estimator, depending on whether one uses the variable in difference or level in the regression. In the next
ection, simulations are conducted to verify these predictions.

.6. Robust II estimator

One may wonder whether the II approach, when one matches the inconsistent WG estimator with its analytical
pproximate expectation, can be extended to cases when some of the classical assumptions are relaxed. Consider the
cenario of cross-sectional heteroskedasticity. If heteroskedasticity exists only among αi, then the analysis in this paper
s not affected. If heteroskedasticity exists instead among uit , it will make the analysis more complicated. Suppose
(uitujt ) = σij,t (when i = j, σ 2

it ). Now uit has not only heteroskedasticity (over t or across i or both) but also possible cross-
ectional correlation (though no intertemporal correlation). Let Σ i = Σ ii = Dg(σ 2

i1, . . . , σ
2
iT ) and Σ ij = Dg(σij,1, . . . , σij,T ),

where Dg(·) generates a diagonal matrix with its arguments spanning the main diagonal. (When Dg has a matrix argument,
it means that it applies to the diagonal elements of the matrix argument.) The covariance matrix of u, denoted by Σ ,
consists of N × N blocks of T × T matrices Σ ij, i, j = 1, . . . ,N . Note that all the T × T blocks are diagonal, but Σ
itself is not diagonal. Then, for t = 1, . . . , p, by using tr(DtMΣ iM) = tr(DtΣ i) + T−2tr(Dt )tr(Σ i) − 2T−1tr(DtΣ i) and
tr(MΣ i) = (1 − T−1)tr(Σ i), one has

E(u′

iMΦ−1
p Ltui) = tr(MΦ−1

p LtΣ i) = tr(DtΣ i)

=
T

T − 2
tr(DtMΣ iM) −

1
(T − 1)(T − 2)

tr(Dt )tr(MΣ i)

=
T

T − 2
E(u′

iMDtMui) −
1

(T − 1)(T − 2)
tr(Dt )E(u′

iMui)

= E(u′

iME tMui), (26)

where

Dt = Dg(MΦ−1
p Lt ), E t =

T
T − 2

Dt −
tr(Dt )

(T − 1)(T − 2)
I . (27)

orrespondingly, in view of (A.4) in Supplementary Appendix A,

E(W ′Au) =

N∑
i=1

⎛⎜⎜⎜⎜⎝
E(u′

iME1Mui)
...

E(u′

iMEpMui)
0k

⎞⎟⎟⎟⎟⎠ . (28)

ince Mui = My i − MY iφ0 − MX iβ0, now consider

Ê(W ′Au) =

N∑
i=1

⎛⎜⎜⎜⎜⎝
(My i − MY iφ0 − MX iβ0)′E1(My i − MY iφ0 − MX iβ0)

...

(My i − MY iφ0 − MX iβ0)′Ep(My i − MY iφ0 − MX iβ0)
0k

⎞⎟⎟⎟⎟⎠ ,

=

⎛⎜⎜⎜⎝
(y − Wθ0)′A(IN ⊗ E1)A(y − Wθ0)

...

(y − Wθ0)′A(IN ⊗ Ep)A(y − Wθ0)
0k

⎞⎟⎟⎟⎠ ≡ f (θ0,W ) = f N (θ0), (29)

hich is a function of θ0 and the observable sample data. It is obvious that E[W ′Au−Ê(W ′Au)] = 0 and one may define the
ecentering term d†

N = (W ′AW )−1Ê(W ′Au). Numerically, one can still follow the II procedure to solve for the unknown θ0
ased on the sample binding function. The challenge though is regarding inference, since the asymptotic variance matrix
f the resulting estimator involves Σ , which is not diagonal and thus a typical White-type asymptotic variance estimator
s not available.

When E(u2
it ) = σ 2

t and Var(ui) = Dg(σ 2
1 , . . . , σ

2
T ) ≡ Σ T , namely, when there is time-series heteroskedasticity only, as

onsidered in Alvarez and Arellano (2022), the II estimation procedure based on d†
N (θ) = (W ′AW )−1f N (θ) carries through.

ormally, Assumption 1 is modified as follows:

ssumption 1′. The series of error terms uit , i = 1, . . . ,N , t = 1, . . . , T , is independent across time and individuals,
2
(uit ) = 0, Var(uit ) = σt , and has finite moments up to the fourth order.

10
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Now Σ = IN ⊗ Σ T ,

E(W ′Au) =

⎛⎜⎜⎜⎝
Ntr(Σ TMΦ−1

p L)
...

Ntr(Σ TMΦ−1
p Lp)

0k

⎞⎟⎟⎟⎠ = E[f N (θ0)],

and
√
N(θ̂ − θ0 − d†

N ) =
√
N(W ′AW )−1 [W ′Au − f N (θ0)

]
,

d
→ N(0,V ), (30)

where

V = lim
N→∞

[N−1E(W ′AW )]−1N−1Var[W ′Au − f N (θ0)][N−1E(W ′AW )]−1. (31)

The sample Jacobian at θ is, in view of (29),

GN (θ) = Im + (W ′AW )−1 ∂f N (θ)
∂θ′

= Im − 2(W ′AW )−1

⎛⎜⎜⎜⎜⎝
(y − Wθ)′A(IN ⊗ E1)AW

...

(y − Wθ)′A(IN ⊗ Ep)AW
Ok×m

⎞⎟⎟⎟⎟⎠
+ (W ′AW )−1

N∑
i=1

(
Z ip Op×k

Ok×p Ok

)
, (32)

where Z ip is a p × p matrix consisting of tr[z i(θ)z i(θ)′∂E t (θ)/∂φs] in its (t, s) position, t, s = 1, . . . , p with z i(θ) =

My i − MY iφ − MX iβ. From (27), one has

∂E t (θ)
∂φs

=
T

T − 2
Dg(MΦ−1

p (φ)LsΦ−1
p (φ)Lt ) −

tr(MΦ−1
p (φ)LsΦ−1

p (φ)Lt )

(T − 1)(T − 2)
I .

ote that this Jacobian function does not depend on Σ T .

heorem 2. Under Assumptions 2 to 5 and 1′ and that G(θ) = plimN→∞GN (θ) is nonsingular in a neighborhood of θ0, θ̌
ased on the sample binding function bN (θ) = θ + (W ′AW )−1f N (θ) has the following asymptotic distribution:

√
N(θ̌ − θ0)

d
→ N(0,V II ), (33)

where V II = G−1VG−1′, G = G(θ0), and V is given by (31).

A consistent estimator of V II can be constructed by using Ĝ = GN (θ̌) and the White-type estimator of V in (31). That
is,

V̂ II = Ĝ
−1

N(W ′AW )−1

(
N∑
i=1

v̂iv̂
′

i

)
(W ′AW )−1Ĝ

−1′
, (34)

where

v̂i = W ′

iM(y i − W iθ̌) −

⎛⎜⎜⎜⎜⎝
(y i − W iθ̌)′ME1M(y i − W iθ̌)

...

(y i − W iθ̌)′MEpM(y i − W iθ̌)
0k

⎞⎟⎟⎟⎟⎠ . (35)

It should be pointed out that in this paper the interest centers on estimating the mean parameters θ0 and treat the
variance parameter(s) as nuisance. This stands in contrast to Alvarez and Arellano’s (2022) approach that also estimates the
variance parameter(s). One can imagine that for cases of moderate T , the finite-sample performance of such an estimator
may not be good. Alvarez and Arellano (2022) did not explicitly provide the asymptotic variance result under a general
non-normal distribution and they recommended using numerical score and Hessian functions.

Note that the definition of E t as in (27) assumes that T > 2. When T = 2, Σ 2 = Dg(σ 2
1 , σ

2
2 ). From Supplementary

Appendix A, Φ−1LΣ is a 2 × 2 matrix with σ 2 in the lower left position and zero elsewhere, and Φ−1LΣ is a 2 × 2
1 2 1 s 2

11
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m
atrix of zeros for any s = 2, . . . , p. Then the only non-zero component of E(W ′

iMui) is tr(MΦ−1
1 LΣ 2) = −σ 2

1 /2. In this
case, a consistent estimator of σ 2

1 is not straightforward.15 Similarly, one can show that taking the first-order difference
cannot distinguish σ 2

1 ̸= σ 2
2 from σ 2

1 = σ 2
2 = σ 2 and the II procedure will not work. Instead, the IV estimator of Anderson

and Hsiao (1981) can be used, which is shown in Alvarez and Arellano (2022) to be the same as their random effects
maximum likelihood (RML) estimator.

3. Monte Carlo simulations

This section presents Monte Carlo experiments designed to assess the finite-sample performance of the proposed
estimator and the resulting inference procedure in comparison with existing approaches. In particular, the first subsection
compare the size performances from II and BC for DP(1). Recall that numerically the II estimator and that from BC
are identical, but the resulting inferences may be different because the estimated variances are calculated differently.
The second subsection compared the simulation-free II estimator in this paper and the simulation-based II estimator
of Gouriéroux et al. (2010). The third subsection considers a correlated design when the covariate is correlated with the
fixed effects. The next two subsections include results for higher-order and DP-τ models. The number of Monte Carlo
replications is 10,000 for DP(1) and higher-order dynamic panels and it is 1000 for DP-τ .16 ‘‘Size(%)’’ in the relevant
tables refers to the empirical rejection rate (%) of the two-sided 5% t test of the relevant parameter equal to its true
value under the asymptotic distribution pertaining to the corresponding estimation strategy. All the reported bias and
root mean squared error (RMSE) results in the relevant tables are multiplied by 100.

3.1. DP(1): II versus BC

To facilitate a direct comparison, the same design in BC is adopted. Specifically, the data generating process (DGP) used
is as follows:

yit = αi + φyi,t−1 + βxit + uit , αi ∼ i.i.d.N(0, 1), uit ∼ i.i.d.(0, 1),

xit = 0.8xi,t−1 + ξit , ξit ∼ i.i.d.N(0, 1), (36)

where the true parameter values are φ0 = 0.8 and β0 = 1 and the combinations of N and T satisfy NT = 600. In addition
to the baseline normal error distribution, four non-normal distributions are considered: uniform on [0, 1], student-t
distribution with 5 degrees of freedom (t5), log-normal distribution lnN(0, 1), and mixture of N(−3, 1) and N(3, 1) with
half probability each. They are recentered and standardized so that each has mean 0 and variance 1. Among the four
non-normal distributions, lnN(0, 1) is skewed (with γ1 = 6.1849), the uniform and normal mixture distributions have
negative excess kurtosis coefficients (γ2 = −1.2 and −1.62, respectively) and the t5 and log-normal distribution have
positive excess kurtosis values of 6 and 110.9364, respectively.

Table 1 presents the size performances of inferences based on the estimated variances calculated from V BC and V II in
this paper.17 To better understand the effects of different error distributions, the initial observations in Table 1 are fixed
(yi0 = αi/(1 − φ0)) so that a direct comparison with BC is possible.

The overall picture is that when one uses V BC to conduct inference on φ, it can result in nonnegligible size distortions,
depending on the specific error distributions, but V II delivers very reliable size performance, regardless of the error
distribution. In more detail, one observes that under normally distributed errors, the empirical size of the t test from
BC is somewhat low when T is small. Given the fixed initial conditions, this phenomenon is consistent with earlier
discussion of the difference between V BC and V II in Section 2.4.1, where it is claimed that V BC over-estimates the variance
of φ̂II inherently. Furthermore, when T is small (T = 2, 3), under the uniform distribution, where the errors exhibit zero
skewness but negative excess kurtosis, the downward size distortion from BC is more severe, in comparison with the
normal case. This is again consistent with the previous argument that negative kurtosis exacerbates the over-estimation
problem of V BC for φ̂II . When the errors possess positive excess kurtosis such as the t5 distribution, the under-size problem
may disappear, but when the excess kurtosis is of a very large magnitude such as the log-normal errors, the t test from BC
becomes more liberal, especially when T is small. This is in line with earlier analysis that positive excess kurtosis may be
large enough to offset, and possibly overtake, the inherent negative term missing in V 0,BC . For β , both V BC and V II deliver
good sizes across T and different error distributions, with an exception that under the log-normal errors, V BC results in
slight size distortion (around 9%) when T = 2.

15 If θ0 is known, let K be a N × 2N selection matrix such that KA(y −Wθ0) picks up elements of A(y −Wθ0) corresponding to t = 1. Then one
may be tempted to use (y − Wθ0)′AK ′KA(y − Wθ0)/N to estimate σ 2

1 , but it in fact estimates Var(ui1 − (ui1 + ui2)/2) = (σ 2
1 + σ 2

2 )/4. The challenge
here is that tr(MΦ−1

1 LΣ2) = −σ 2
1 /2 cannot distinguish the case σ 2

1 ̸= σ 2
2 from σ 2

1 = σ 2
2 = σ 2 .

16 Matlab’s fminsearch is used to search for the solution that numerically minimizes the Euclidean distance between bN (θ) and θ̂, which is
equivalent to numerically inverting the sample binding function. It results in no numerical failure, up to the default termination tolerance, in all the
simulations in this section. fsolve, however, occasionally yields numerical failures and thus it is not used.
17 The bias and RMSE results match almost exactly those from BC and they are omitted. Results related to GMM and WG, which were considered
in BC, are also omitted due to the same reason.
12



Y. Bao and X. Yu Journal of Econometrics xxx (xxxx) xxx

t

e

i
s
o
c
n

3

‘

Table 1
Rejection rates (%) of 5% t tests from BC and II in DP(1).
Error distribution (N, T ) (300,2) (200,3) (150,4) (100,6) (60,10) (40,15)

Normal φ BC 2.68 3.55 3.75 4.19 4.86 4.71
II 5.34 5.41 5.28 5.67 6.02 5.80

β BC 4.94 5.22 5.09 5.17 5.39 4.78
II 5.41 5.61 5.63 5.53 5.48 5.29

Uniform φ BC 1.82 2.79 3.34 4.06 4.60 5.46
II 5.16 5.23 5.49 5.81 5.68 6.48

β BC 4.71 5.02 5.13 5.09 4.84 5.11
II 5.71 5.45 5.39 5.17 5.27 6.09

t5 φ BC 5.12 4.99 4.64 4.95 5.04 4.82
II 4.95 5.42 5.53 5.62 5.85 5.70

β BC 5.35 5.26 5.03 4.81 5.01 5.15
II 5.38 5.27 5.25 5.67 5.57 5.53

lnN(0, 1) φ BC 22.44 16.26 12.79 8.82 6.33 5.70
II 4.25 3.88 4.19 4.85 5.01 5.84

β BC 8.68 6.80 5.75 5.30 5.32 5.02
II 5.11 5.06 4.75 5.13 5.26 5.05

Mixture φ BC 1.58 2.96 3.51 3.95 4.77 5.59
II 5.33 5.58 5.74 5.62 5.72 6.53

β BC 4.41 4.76 4.68 5.42 4.75 4.72
II 5.23 5.29 5.09 5.94 5.28 5.64

Notes: φ0 = 0.8, β0 = 1, αi ∼ i.i.d.N(0, 1), yi0 = αi/(1 − φ0), xit = 0.8xi,t−1 + ξit , ξit ∼ i.i.d.N(0, 1).

In summary, BC’s size performance is not stable across different error specifications, especially when T is small.
To further demonstrate the effects on hypothesis testing due to the difference between V BC and V II , a second set of
simulations are conducted. Given that there are multiple factors that contribute to the difference, each time only one factor
is adjusted while the other factors are fixed. The sample size is set at (N, T ) = (300, 2). In Fig. 1, the top two sub-figures
(first row) plot the empirical rejection probabilities of the t tests for φ using V BC and V II under normal errors and mixture
normal with negative excess kurtosis across different values of φ0 (with initial observations yi0 = αi/(1−φ0)). These two
sub-figures clearly indicate the persistence of BC’s under-size issue. In the second row, the left sub-figure conducts an
experiment where the errors display zero excess kurtosis but its skewness changes.18 With other factors fixed, the size
of BC-based t test remains stable across different degrees of skewness and it is under-sized. The right sub-figure uses the
same error distribution at a given skewness level and varies the value of φ0. Again, it documents the persistent under-size
issue of the t test from BC. The third row investigates the effects of the excess kurtosis parameter γ2. The left sub-figure
uses the mixture of normal errors (see Supplementary Appendix F) with negative excess kurtosis, and it is clear that as the
magnitude of negative excess kurtosis increases, the under-size issue of BC-based t test is more pronounced, confirming
that negative excess kurtosis leads to over-estimation of the variance of φ̂II from V BC . The right sub-figure uses a certain
-distribution to fix the condition γ1 = 0 and varies γ2 in the positive domain.19 Interestingly, within the positive region
of γ2, the empirical size of BC-based t test increases as γ2 grows and after a certain point (around γ2 = 9), it starts to
xceed the nominal 5% rate. Again, this confirms the previous analysis of the effects of γ2 in Section 2.4.1.
The last row in Fig. 1 studies the role of the initial conditions. The errors are simulated as standard normal but the

nitial observations are generated by yi0 = ψαi + ωi, where ωi ∼ i.i.d.N(0, σ 2
ω). By changing ψ and σ 2

ω , one sees that the
ize performance of BC-based t test is pretty stable (between 2% and 3% throughout). Keep in mind that changing values
f yi0 affects also the bread part of the sandwich variance matrices and its overall effect may not be obvious. Across all
onfigurations, the II procedure achieves outstanding size performance, with its empirical rejection rate very close to the
ominal size.

.2. DP(1): II versus simulation-based II

This subsection compares the simulation-free II estimator proposed in this paper and its robust version (denoted by
‘IIr’’) with the simulation-based II estimator of Gouriéroux et al. (2010) (denoted by ‘‘II⋆’’) under both homoskedasticity

18 Supplementary Appendix F provides details of constructing such errors by employing a location mixture of two normal distributions.
19 It is infeasible to construct an error distribution that satisfies zero mean, unit variance, zero skewness but an arbitrary magnitude of positive
excess kurtosis at the same time using the location mixture (see Supplementary Appendix F for details). Alternatively, one can easily construct such
a distribution via a t distribution. For a given γ2 level, say γ2 = a, a ∈ (0,∞), the error term can be simulated as uit =

√
(a + 3)/(2a + 3)eit , where

e follows a t distribution with degrees of freedom 6/a + 4.
it

13
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Fig. 1. Rejection rates (%) of 5% t tests from BC and II (N = 300, T = 2).

and heteroskedasticity (Var(uit ) = t). The DGP is the same as (36) and Table 2 reports results under normal errors.20
Note that Gouriéroux et al. (2010) did not estimate β and the asymptotic distribution result is under the assumptions of
large N and large T . The resulting variance formula gives rise to empirical rejection rates of almost always around 100%
in the experiment configurations considered (when T is relatively small and there is X) for the 5% t test and thus only
the bias and RMSE results (pertaining to the estimated φ) are reported in Table 2. (This is also the case for II⋆ in the next
subsection.) Further, Gouriéroux et al. (2010) assumed |φ0| < 1 and thus Table 2 does not contain the case of φ0 = 1.

Notably, the simulation-based II estimator performs worse in terms of bias than the simulation-free II estimator (and its
robust version) under homoskedasticity. Its RMSE also performs worse than the simulation-free one, especially when φ0 is
small (0.4) and occasionally better when φ0 is large. Under heteroskedasticity, the simulation-based II does not necessarily
perform worse, even though homoskedastic pseudo errors are simulated. The simulation-free robust II is dominantly better
in terms of bias. It also fares much better in terms of RMSE on most occasions.

Arguably, the somewhat disappointing performance of II⋆ relative to the simulation-free II may be due to two factors.
First, Gouriéroux et al. (2010) did not provide Monte Carlo results when there are exogenous regressors. Second, the
inference procedure in Gouriéroux et al. (2010) requires large T . Table 3 presents results when T is in fact relatively large
and there is no X . Now the simulated-based II performs relatively better on some occasions, though not universally, than
the simulation-free II in terms of bias and RMSE. Included also in Table 3 are the bias-corrected estimator of Hahn and

20 See equation (19) of Gouriéroux et al. (2010) with exogenous regressors. In Table 2, S = 250 simulations are used in building the binding function
or II⋆ . As documented in Gouriéroux et al. (2010), increasing the number of simulations S gives rise to little improvement of their estimator. When
it is independently and normally distributed with mean 0 and variance t , it is denoted by uit ∼ i.d.N(0, t). Under heteroskedasticity, the pseudo

error term in the simulation-based II estimator of Gouriéroux et al. (2010) is simulated as i.i.d.N(0, 1) given that one typically has no knowledge of
the variance structure.
14
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Table 2
Bias and RMSE results from II and simulation-based II (II⋆) in DP(1).
uit φ0 (N, T ) (300,2) (200,3) (150,4) (100,6) (60,10) (40,15)
i.i.d.N(0, 1) 0.4 Bias II 0.22 0.06 0.00 −0.06 −0.11 −0.08

IIr 0.00 0.13 0.01 −0.06 −0.11 −0.08
II⋆ 28.35 22.09 23.46 23.09 18.04 12.86

RMSE II 5.79 4.31 3.67 3.12 2.72 2.44
IIr 0.00 4.81 3.81 3.14 2.72 2.45
II⋆ 28.68 22.20 23.56 23.22 18.28 13.14

0.8 Bias II 0.22 0.09 0.05 0.00 −0.06 −0.05
IIr 0.00 0.16 0.06 0.00 −0.06 −0.05
II⋆ 6.74 3.16 5.50 7.63 9.14 9.60

RMSE II 5.79 3.80 2.99 2.27 1.74 1.43
IIr 0.00 4.27 3.13 2.31 1.74 1.43
II⋆ 7.44 3.50 5.63 7.70 9.18 9.64

0.95 Bias II 0.22 0.09 0.07 0.03 −0.02 −0.01
IIr 0.00 0.16 0.08 0.03 −0.02 −0.01
II⋆ −3.17 −4.64 −2.22 −0.10 1.32 1.93

RMSE II 5.79 3.57 2.66 1.85 1.25 0.96
IIr 0.00 4.02 2.79 1.88 1.25 0.96
II⋆ 4.13 4.83 2.45 0.77 1.43 1.98

i.d.N(0, t) 0.4 Bias II 29.40 19.04 12.02 5.49 1.82 0.67
IIr 0.00 0.64 0.15 −0.07 −0.24 −0.26
II⋆ 17.31 13.66 15.61 15.13 10.96 7.46

RMSE II 34.55 22.98 15.21 8.29 5.35 4.65
IIr 0.00 8.42 6.32 5.23 4.75 4.50
II⋆ 19.78 15.07 16.04 15.71 11.95 8.78

0.8 Bias II 29.38 20.49 16.07 11.33 6.34 3.30
IIr 0.00 0.78 0.27 0.07 −0.17 −0.22
II⋆ 0.36 −2.89 0.20 3.11 5.16 5.77

RMSE II 34.51 24.02 18.99 13.75 8.68 5.72
IIr 0.00 8.19 5.82 4.47 3.76 3.41
II⋆ 3.86 3.69 2.01 3.61 5.49 6.15

0.95 Bias II 29.45 19.56 15.03 10.86 7.46 5.56
IIr 0.00 0.78 0.29 0.12 −0.07 −0.09
II⋆ −8.59 −10.23 −6.92 −3.81 −1.52 −0.38

RMSE II 34.62 22.97 17.73 12.93 9.03 6.88
IIr 0.00 7.90 5.35 3.84 2.98 2.60
II⋆ 9.27 10.43 7.13 4.07 1.92 1.12

Notes: β0 = 1, αi ∼ i.i.d.N(0, 1), yi0 = αi/(1 − φ0), xit = 0.8xi,t−1 + ξit , ξit ∼ i.i.d.N(0, 1). Bias and RMSE are multiplied by 100.

Kuersteiner (2002, HK for short) and the first difference least squares estimator of Han and Phillips (2010, HP for short),
both of which require large T .21 The WG estimator, which is consistent under large T , is included as well. One can find
hat the II estimator and its robust version typically correct the bias well and have very good RSME performance, but with
pward size distortions when one uses the asymptotic distributions in (9) and (33). Recall that the asymptotic distribution
f the II estimator derived in this paper is under the assumption of finite T . The simulation-based II estimator usually
chieves the lowest RMSE, though also with upward size distortions. The estimator of Han and Phillips (2010) achieves
he best size performance, but when φ0 = 1, it delivers much higher RMSE than the II estimator. The estimator of Hahn
nd Kuersteiner (2002) is slightly better than II in terms of RMSE, but may perform worse in terms of bias. It also has
pward size distortions, more severely as φ0 goes up. The WG estimator performs reasonably well, as expected, in terms
f bias and RMSE, but the associated inference becomes more and more unreliable as φ0 goes up.
Supplementary Appendix H contains results under heteroskedasticity and additional results under other error distri-

butions are available upon request. They lead to similar observations.

3.3. DP(1) under correlated design

In the previous two subsections, the scalar exogenous variable, when present, is not correlated with the fixed effects.
For panel models with fixed effects, it may be of more interest to allow for correlation. Consider the following design:
yit = αi + φyi,t−1 + βxit + uit , xit = ρiαi + ξit , ρi ∼ i.i.d. uniform on [0, 1] (i.i.d.U[0, 1] for short), ξit ∼ i.i.d.N(0, 1),
i ∼ i.i.d.N(0, 1). Table 4 reports the bias, RMSE, and empirical rejection rates when φ0 = 0.8, β0 = 1, and uit is

21 Hahn and Kuersteiner (2002) require |φ0| < 1 (see their Eq. (6)) and Han and Phillips (2010) require φ0 ∈ (−1, 1] (see their Theorem 1) under
large T . Further, Han and Phillips (2010) specify the fixed effects as αi(1−φ0) instead of αi to ensure continuity of their estimator and the resulting
asymptotics at φ0 = 1. When |φ0| < 1, the two specifications of fixed effects are indistinguishable. Simulations results in Table 3 are based on the

specification of Han and Phillips (2010) and for the initial conditions, y = α (1 − φ ) + u /

√
1 − φ2 when |φ | < 1 and y = 0 when φ = 1.
i0 i 0 i0 0 0 i0 0
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Table 3
Simulation results for DP(1) (no X and large T ) with uit ∼ i.i.d.N(0, 1).
N (T , φ0) (50,0.4) (50,0.8) (50,0.95) (50,1) (100,0.4) (100,0.8) (100,0.95) (100,1)
10 Bias WG −2.95 −4.17 −5.28 −6.32 −1.53 −2.05 −2.47 −3.21

HK −0.21 −0.65 −1.48 −0.14 −0.27 −0.54
HP 0.34 0.34 0.22 −0.13 0.08 0.10 0.13 0.06
II −0.13 −0.34 −0.01 −0.94 −0.12 −0.19 0.71 −0.44
IIr −0.13 −0.34 −0.01 −0.96 −0.12 −0.19 0.72 −0.44
II⋆ 0.04 0.00 −1.01 −0.04 −0.02 −0.13

RMSE WG 5.20 5.19 5.77 6.65 3.34 2.92 2.82 3.37
HK 4.36 3.23 2.80 3.00 2.11 1.49
HP 7.54 8.59 8.89 8.93 5.34 5.99 6.28 6.43
II 4.37 3.28 3.24 2.93 3.00 2.12 2.33 1.47
IIr 4.37 3.28 3.24 2.96 3.00 2.12 2.34 1.48
II⋆ 4.40 3.22 2.29 3.01 2.11 1.38

Size (%) WG 11.10 27.97 75.16 98.50 8.43 17.09 51.26 98.85
HK 6.66 9.10 23.59 5.54 7.43 15.27
HP 4.86 4.96 4.90 4.46 4.86 4.65 5.22 4.97
II 9.09 9.47 14.84 21.17 8.78 8.72 20.70 20.07
IIr 9.11 9.41 14.30 21.36 8.76 8.79 20.80 20.10
II⋆ 6.93 10.77 13.95 5.72 7.99 15.74

20 Bias WG −2.91 −4.00 −5.07 −6.09 −1.47 −1.96 −2.37 −3.09
HK −0.16 −0.48 −1.27 −0.08 −0.18 −0.44
HP 0.21 0.35 0.17 0.02 0.06 0.09 0.10 −0.00
II −0.08 −0.16 0.38 −0.57 −0.06 −0.1 0.57 −0.27
IIr −0.08 −0.16 0.36 −0.57 −0.06 −0.1 0.57 −0.27
II⋆ 0.01 0.01 −0.92 −0.02 −0.01 −0.12

RMSE WG 4.17 4.56 5.33 6.26 2.55 2.43 2.56 3.18
HK 3.05 2.30 2.11 2.11 1.47 1.07
HP 5.35 6.11 6.29 6.34 3.77 4.23 4.45 4.55
II 3.06 2.32 2.74 2.14 2.11 1.47 1.86 1.08
IIr 3.06 2.32 2.72 2.15 2.11 1.47 1.86 1.08
II⋆ 3.07 2.29 1.71 2.11 1.47 0.98

Size (%) WG 16.18 47.52 95.50 99.99 11.04 28.02 78.87 100.00
HK 6.19 9.92 29.19 5.63 6.95 16.47
HP 4.98 4.88 4.83 4.95 4.93 4.65 5.53 5.01
II 6.93 7.59 16.86 17.22 6.60 6.74 14.44 17.00
IIr 6.92 7.56 16.26 17.17 6.60 6.77 14.60 16.73
II⋆ 6.36 10.96 17.65 5.69 7.63 15.61

50 Bias WG −2.88 −3.90 −4.94 −5.96 −1.41 −1.90 −2.29 −3.02
HK −0.14 −0.38 −1.14 −0.02 −0.12 −0.37
HP 0.13 0.30 0.07 0.01 0.08 0.09 0.06 0.01
II −0.06 −0.07 0.79 −0.49 0.00 −0.04 0.15 −0.24
IIr −0.06 −0.07 0.79 −0.49 0.00 −0.04 0.14 −0.25
II⋆ −0.02 0.01 −0.85 0.02 0.00 −0.10

RMSE WG 3.44 4.13 5.04 6.03 1.93 2.10 2.37 3.05
HK 1.92 1.45 1.54 1.34 0.92 0.70
HP 3.36 3.83 3.95 4.00 2.37 2.69 2.82 2.86
II 1.92 1.44 2.52 1.49 1.34 0.92 1.03 0.76
IIr 1.92 1.44 2.52 1.51 1.34 0.92 1.03 0.77
II⋆ 1.93 1.42 1.24 1.34 0.92 0.61

Size (%) WG 33.46 84.58 99.99 100.00 18.68 57.00 99.21 100.00
HK 5.93 10.06 39.98 5.95 6.88 18.66
HP 4.55 4.75 4.68 4.55 4.73 5.01 4.92 5.06
II 5.38 5.76 24.63 16.01 5.96 5.64 6.11 17.00
IIr 5.39 5.84 24.73 15.43 5.95 5.58 6.04 16.78
II⋆ 6.00 10.09 26.32 5.98 7.07 14.45

Notes: αi ∼ i.i.d.N(0, 1), yi0 = αi(1 − φ0) + ui0/

√
1 − φ2

0 (= 0 when φ0 = 1). Bias and RMSE are multiplied by 100.

ndependently and normally distributed under both homoskedasticity and heteroskedasticity (Var(uit ) = t). Results related
o β are in Supplementary Appendix H. The bias-corrected score, random effects maximum likelihood, concentrated
andom effects maximum likelihood of Alvarez and Arellano (2022), and their robust versions, denoted by ‘‘BCS’’, ‘‘RML’’,
‘RMLc’’, ‘‘BCSr’’, ‘‘RMLr’’, and ‘‘RMLcr’’, respectively, are also included for comparison. ‘‘GMM’’ denotes the (one-step) GMM
stimator of Arellano and Bond (1991).
One can observe that the GMM-based inference displays substantial size distortions as T goes up. This is not surprising,

given that the GMM estimator is consistent under small T but suffers from high estimation uncertainty when T is not
small, as the number of moment conditions is proportional to T 2 when T grows while the number of endogenous variables
is fixed in the current context. Under homoskedasticity, the performance of BC is similar to that in Section 3.1, but
under heteroskedasticity, it performs much worse, especially in terms of its size. Recall the BC is not designed under
heteroskedasticity. The robust II performs very well under both homoskedasticity and heteroskedasticity. The various
estimators proposed in Alvarez and Arellano (2022) are beaten on many occasions by the robust II, especially in terms of
size performance. As in the previous subsection, the simulation-based II performs reasonably well under homoskedasticity,
16
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Table 4
Bias, RMSE, and rejection rates (%) of 5% t tests from various estimators of φ0 in DP(1).
uit (N, T ) (300,2) (200,3) (150,4) (100,6) (60,10) (40,15)
i.i.d.N(0, 1) Bias GMM −0.10 −1.11 −1.58 −2.52 −3.70 −4.86

BC 1.75 0.75 0.45 0.05 −0.03 −0.10
II 1.75 0.75 0.45 0.05 −0.03 −0.10
BCS 1.77 0.72 0.43 0.02 −0.05 −0.11
RML 0.23 0.03 −0.05 −0.12 −0.31 −1.19
RMLc −0.01 −0.04 −0.06 −0.10 −0.08 −0.09
IIr 1.74 0.74 0.13 0.00 −0.09
BCSr 2.02 0.91 0.24 0.15 −0.01
RMLr 34.93 −8.64 −12.50 −12.65 −10.04 −6.86
RMLcr 134.43 −0.82 −0.58 −0.49 −0.43 −0.48
II⋆ −4.42 −7.82 −3.16 1.18 4.24 5.00

RMSE GMM 9.10 6.26 5.11 4.55 4.70 5.46
BC 13.42 8.02 5.91 4.28 3.14 2.63
II 13.42 8.02 5.91 4.28 3.14 2.63
BCS 13.60 8.02 5.91 4.27 3.14 2.63
RML 6.32 4.33 3.40 2.74 2.73 3.53
RMLc 5.35 3.89 3.27 2.69 2.22 1.99
IIr 10.97 7.00 4.54 3.18 2.64
BCSr 11.72 7.55 4.78 3.36 2.80
RMLr 110.18 23.16 68.99 16.03 10.68 7.32
RMLcr 282.99 4.11 3.37 2.77 2.28 2.09
II⋆ 5.92 8.19 3.82 2.23 4.61 5.37

Size (%) GMM 5.24 6.42 6.66 10.76 24.62 52.45
BC 2.48 2.28 2.21 3.06 3.96 4.49
II 5.00 4.47 4.45 5.11 5.59 6.12
BCS 8.19 20.43 24.40 26.68 24.70 21.94
RML 6.55 6.44 6.29 6.42 8.26 15.06
RMLc 9.29 10.64 11.66 12.51 13.28 13.95
IIr 5.22 4.33 4.97 5.53 6.11
BCSr 6.90 12.75 24.53 25.23 23.32
RMLr 53.53 15.85 37.51 57.80 60.34 43.78
RMLcr 93.56 6.96 19.16 34.21 43.30 46.48

i.d.N(0, t) Bias GMM −0.16 −2.72 −4.44 −7.66 −11.08 −12.17
BC 28.90 22.48 18.30 13.82 9.90 6.46
II 28.90 22.48 18.30 13.82 9.90 6.46
BCS 54.03 36.06 27.33 18.48 11.35 6.59
RML 0.93 0.24 −0.04 −0.47 −1.27 −2.42
RMLc −0.02 −0.02 −0.06 −0.14 −0.15 −0.21
IIr 2.96 1.59 0.47 0.13 −0.10
BCSr 3.46 1.80 0.61 −0.02 −0.37
RMLr 21.84 15.03 7.51 3.81 −10.76 −10.06
RMLcr 7.30 −1.90 −1.39 −1.09 −1.14 −1.25
II⋆ −13.51 −15.10 −9.68 −4.58 −0.93 0.22

RMSE GMM 14.49 10.85 9.80 10.59 12.49 12.96
BC 29.80 23.12 18.86 14.37 10.98 8.73
II 29.80 23.12 18.86 14.37 10.98 8.73
BCS 56.37 37.15 28.15 19.25 12.70 9.01
RML 10.18 6.58 5.38 4.51 4.94 5.14
RMLc 7.30 5.56 4.76 4.13 3.71 3.59
IIr 15.90 11.15 7.39 5.55 4.52
BCSr 19.35 14.17 13.39 5.75 4.19
RMLr 81.42 804.19 469.84 35.82 19.42 11.21
RMLcr 147.99 7.94 6.20 5.14 4.23 3.88
II⋆ 15.66 15.48 10.18 5.49 3.38 3.49

Size (%) GMM 5.66 7.66 9.05 19.55 49.10 79.23
BC 0.00 0.01 0.06 0.02 0.20 1.87
II 0.00 0.00 0.00 0.04 0.46 2.01
BCS 99.33 99.78 99.68 99.30 97.69 95.41
RML 0.79 0.42 0.40 0.33 1.48 3.68
RMLc 1.76 3.37 4.27 5.53 6.55 7.62
IIr 5.50 4.55 4.66 4.97 5.44
BCSr 11.82 6.80 23.89 27.70 25.86
RMLr 41.03 27.33 44.22 44.36 45.42 33.56
RMLcr 95.42 14.32 29.76 43.78 50.69 53.08

Notes: φ0 = 0.8, β0 = 1, αi ∼ i.i.d.N(0, 1), yi0 = αi/(1 − φ0), xit = ρiαi + ξit , ρi ∼ i.i.d.U[0, 1], and ξit ∼ i.i.d.N(0, 1). Bias and RMSE are multiplied
by 100.

when the pseudo errors are simulated as such. However, under heteroskedasticity, with simulated homoskedastic errors,
its performance can get worse.22

22 Additional results, when φ0 = 0.4, 0.95, and 1, under homoskedastic and heteroskedastic errors and various values of yi0 , not reported here but
available upon request from the corresponding author, reveal that the II estimator performs remarkably well across different model specifications
and reasonably well even under heteroskedasticity. Its robust version performs very well under both homoskedasticity and heteroskedasticity.
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.4. Higher-order dynamic panels

This subsection provides simulation results for higher-order dynamic panel models. First considered is a second-order
ynamic panel model with two exogenous regressors (with one of them correlated with the fixed effects),

yit = αi + φ1yi,t−1 + φ2yi,t−2 + β1x1,it + β2x2,it + uit , αi ∼ i.i.d.N(0, 1),
x1,it = 0.8x1,it−1 + ξ1,it , x2,it = ρiαi + ξ2,it ,

ξ1,it ∼ i.i.d.N(0, 1), ξ2,it ∼ i.i.d.N(0, 1), ρi ∼ i.i.d.U[0, 1]. (37)

he values of β1 and β2 are both set at 1. The initial observations are simulated as yis = αi/(1−φ01 −φ02)+uis
√
Var(zs)+

x′

isβ0, s = 0,−1, where zs follows a stationary zero-mean second-order autoregressive (AR(2)) process with coefficients
φ01 and φ02 and its shock term is a unit-variance normal white noise. The combinations of N and T satisfy NT = 600. For
the GMM estimator, it is based on the first differenced equation ∆yit = φ1∆yi,t−1 +φ2∆yi,t−2 +β1∆x1,it +β2∆x2,it +∆uit ,
leading to the following moment conditions: E(yi,t−s∆uit ) = 0, t = 2, . . . , T , s = 2, . . . , t; E(x1,is∆uit ) = 0, t =

2, . . . , T , s = 1, . . . , T ; E(x2,is∆uit ) = 0, t = 2, . . . , T , s = 1, . . . , T . In total, there are T (T − 1)/2 + 2T (T − 1) moment
conditions.

Table 5 presents the bias, RMSE, and empirical size results, where φ01 = 0.5, φ02 = 0.3, and the error term uit is
simulated from a normal distribution. In addition to the individual parameters φ1 and φ2, their sum φ1 + φ2 may also be
of interest, which is needed for calculating the cumulative partial effects of past shocks. So in Table 5 statistics related to
φ1 + φ2 are included as well. Results related to β are relegated to Supplementary Appendix H.

One can observe that the GMM estimator is almost unbiased when T is small. However, it becomes more biased when
T goes up. This is not unexpected as the performance of GMM is related to the number of moment conditions used.
Meanwhile, the bias of II is stable across T and is virtually zero for all (N, T ) combinations considered here and in terms
of RMSE, II is the best across the majority of all configurations and GMM is almost as good as II. In terms of the empirical
size for testing φ1 and φ1+φ2, GMM performs well in small T but becomes more and more over-sized as T grows, while II
delivers very good size performance in all cases. Interestingly, for testing the second-order autoregressive parameter φ2,
GMM performs reasonably well and is less sensitive to T . The robust BCS- and RML-based approaches produce relatively
larger bias and higher RMSE in many cases and can give empirical rejection rates very off the nominal size.

Supplementary Appendix H contains results for DP(3). Available upon request are additional results for DP(2) and DP(3)
under other error distributions and under different specifications when the cumulative partial effects of past shocks are
formulated to be zero (e.g., φ01 = −0.1 and φ02 = 0.1). The conclusions one can draw are very similar to those from
Table 5.

3.5. DP-τ

This subsection provides simulation results for dynamic panel models in convergence studies. Now the DGP considered
is (24) with φ = 1 + τρ, αi ∼ i.i.d.N(0, 1), and uit ∼ i.i.d.N(0, 1). The primary parameter of interest in the so-called
convergence parameter ρ = (φ − 1)/τ . Table 6 presents the bias, RMSE, and empirical rejection rates (pertaining to ρ)
from the GMM, OLS1, and II methods under τ = 5 and φ0 = 0.8, 0.5, 0.2,−0.2. The combinations of N and T satisfy
N = ⌊600/(T − 1)⌋.23 The WG estimator is included as well since there are cases of relatively large T .

When T > 10, the GMM estimator in Table 6 represents the τ th-order difference GMM of Caselli et al. (1996). In terms
of bias and RMSE, GMM performs, in general, the worst among the four estimators, especially when φ0 is large (see, for
example, cases where T = 11 and φ0 = 0.8, 0.5).24 Equivalently, it means that when a negative converge parameter ρ is
close to 0, GMM tends to produce very misleading results. The WG estimator does not perform too bad in terms of its bias
and RMSE, which is not unexpected as the T considered here is not too small. In contrast, the II estimator proposed in this
paper is the best in terms of bias and RMSE among the four estimators under all cases considered here. Compared with II,
OLS1 is nearly as good in terms of bias, but it fares worse in terms of RMSE. Now turning to the size performance, one can
see that GMM gets worse as T increases, which echoes the finding in the DP(1) experiments. WG also displays substantial
upward size distortions. Both OLS1 and II are slightly over-sized, but II-based empirical rejection rate is typically closer
to the nominal size.

When T = 7, corresponding to the case of T = τ + 2, as analyzed before, the WG, OLS1, and II estimators are all
consistent and yield numerically the same result. The GMM estimator in Table 6 is based on the first differenced equation
with yi1 and yi2 as instruments. Under the weighting matrix adopted in Arellano and Bond (1991), it is the same as the

23 Keep in mind that in this subsection, the effective sample size over time is T and it is assumed that pre-time observations are not available.
uch a choice of (N, T ) is used to make data at t = 1, τ + 1, 2τ + 1, . . . , ⌊T/τ⌋τ + 1 available (when T > 10) and one can use the τ th-order
ifference GMM estimator of Caselli et al. (1996).
24 When T = 11 and τ = 5, the τ th-order difference GMM of Caselli et al. (1996) uses, for each cross-sectional unit, observations from t = 1, 6, 11
only and there is only one orthogonality moment condition, see equation (4) in Bao and Dhongde (2009). In contrast, the OLS1 estimator uses
observations from t = 6, . . . , 11 and the II estimator uses observations from t = 1, . . . , 11. Thus the performance of the τ th-order difference GMM
estimator can be really bad under this N − T -combination. This was also documented in the Monte Carlo study of Bao and Dhongde (2009).
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Table 5
Bias, RMSE, and rejection rates (%) of 5% t tests from various estimator in DP(2).

(N, T ) (200,3) (100,6) (40,15) (200,3) (100,6) (40,15) (200,3) (100,6) (40,15)
uit φ1 φ2 φ1 + φ2

i.i.d.N(0, 1) Bias GMM −0.59 −1.20 −2.05 −0.09 −0.31 −0.52 −0.67 −1.50 −2.57
II 0.07 0.04 −0.01 0.07 −0.01 −0.02 0.14 0.03 −0.04
BCS 0.06 0.02 −0.02 0.07 −0.02 −0.02 0.13 −0.00 −0.05
RML −1.32 −0.78 −0.16 −1.16 −1.32 −0.74 −2.49 −2.10 −0.90
RMLc −1.60 −0.75 0.06 −1.22 −1.32 −0.70 −2.82 −2.07 −0.64
IIr 0.14 0.05 −0.01 0.06 −0.01 −0.02 0.20 0.04 −0.04
BCSr 0.14 0.10 0.00 0.09 0.02 −0.05 0.23 0.12 −0.04
RMLr −11.75 −6.71 −2.04 −3.96 −2.33 −0.64 −15.71 −9.04 −2.68
RMLcr −1.88 −0.81 0.02 −1.28 −1.33 −0.72 −3.16 −2.14 −0.69

RMSE GMM 3.86 3.08 3.12 3.94 2.82 2.35 5.10 3.16 3.02
II 3.70 2.63 2.35 2.90 2.43 2.27 5.14 2.84 1.59
BCS 3.69 2.63 2.35 2.90 2.43 2.27 5.12 2.84 1.59
RML 3.96 2.54 2.43 3.03 2.67 2.35 5.10 3.02 1.76
RMLc 3.22 2.48 2.34 2.89 2.66 2.34 4.66 2.96 1.49
IIr 4.06 2.65 2.35 3.05 2.44 2.27 5.72 2.89 1.59
BCSr 4.08 2.69 2.43 3.07 2.47 2.33 5.75 2.94 1.66
RMLr 16.48 7.25 3.16 8.17 3.41 2.43 21.80 9.52 3.13
RMLcr 3.40 2.53 2.40 2.94 2.69 2.40 4.90 3.03 1.55

Size (%) GMM 5.76 7.55 14.33 5.39 5.25 5.50 5.66 9.06 39.13
II 5.11 5.47 5.26 5.53 5.31 4.99 5.63 5.75 5.64
BCS 9.24 9.13 7.01 5.51 5.06 5.89 8.13 10.41 10.15
RML 10.85 7.28 7.43 8.18 9.50 7.68 13.87 16.73 11.42
RMLc 13.08 8.63 6.96 9.20 10.27 8.01 17.56 25.41 14.09
IIr 5.06 5.39 5.23 5.55 5.27 4.97 5.24 5.81 5.54
BCSr 3.37 9.71 7.83 3.48 5.51 6.78 2.47 10.15 11.34
RMLr 68.34 58.40 13.88 38.89 15.14 7.78 68.89 72.82 28.70
RMLcr 0.47 5.93 6.82 1.31 8.65 8.38 0.47 12.82 23.79

i.d.N(0, t) Bias GMM −1.93 −4.82 −7.66 −0.46 −1.63 −4.25 −2.39 −6.45 −11.91
II 17.92 8.73 2.57 8.65 5.48 2.53 26.57 14.21 5.10
BCS 18.77 8.98 2.70 8.87 5.59 2.60 27.64 14.56 5.30
RML 0.34 −0.69 −2.28 −0.52 −1.01 −2.13 −0.18 −1.70 −4.41
RMLc −0.41 −0.01 3.25 −1.00 −1.06 −2.87 −1.42 −1.07 0.37
IIr 1.25 0.22 −0.02 0.55 0.03 −0.14 1.79 0.25 −0.17
BCSr 1.28 0.20 −0.30 0.47 −0.04 −0.50 1.75 0.16 −0.80
RMLr 25.13 −10.34 −6.03 −5.03 −5.68 −3.30 20.10 −16.02 −9.33
RMLcr −2.28 −1.01 −0.67 −1.41 −1.17 −1.09 −3.69 −2.19 −1.76

RMSE GMM 7.33 7.17 8.76 6.67 5.12 6.01 10.15 8.97 12.59
II 21.95 11.62 5.66 11.21 7.61 5.33 32.20 17.72 8.01
BCS 23.43 12.09 5.89 11.55 7.78 5.43 34.05 18.40 8.44
RML 6.59 4.49 83.65 4.73 4.28 78.18 8.45 5.22 9.65
RMLc 7.58 6.69 18.22 6.05 6.00 14.75 7.23 4.69 5.08
IIr 9.89 5.20 4.39 6.36 4.51 4.32 14.68 6.73 4.40
BCSr 12.32 7.20 4.21 7.00 4.46 4.10 17.67 8.62 4.19
RMLr 997.56 42.98 7.67 679.57 42.35 5.67 684.61 60.20 10.47
RMLcr 6.58 4.34 4.08 5.21 4.20 4.11 9.70 5.28 3.92

Size (%) GMM 6.29 16.72 50.29 6.12 7.24 20.33 6.60 19.94 90.64
II 0.92 3.07 4.10 4.94 7.72 5.27 1.46 4.35 2.90
BCS 94.40 91.83 89.03 86.07 85.41 87.55 94.06 95.13 94.17
RML 2.09 3.07 9.10 3.79 4.70 7.59 1.81 2.00 11.79
RMLc 5.90 6.87 9.28 7.10 7.81 9.73 5.98 9.73 14.48
IIr 4.42 5.30 5.13 4.32 5.14 4.98 4.43 4.89 5.72
BCSr 3.11 15.61 10.76 2.04 5.40 7.74 2.76 14.46 21.14
RMLr 9.95 30.67 17.43 12.32 30.41 10.51 9.26 48.01 26.09
RMLcr 2.20 4.89 8.44 1.95 5.44 9.14 2.03 6.40 22.46

Notes: See (37) for simulation design; φ01 = 0.5, φ02 = 0.3, and β01 = β02 = 1. Bias and RMSE are multiplied by 100.

2SLS estimator and it generates exactly the same result as OLS1.25 Their rejection rates are all close to the nominal size
nd II’s size performance is slightly worse than WG, given that II tries to bias correct the consistent WG estimator. When
= 8, WG is still the same as II, but OLS1 and GMM (based on the differenced equation with instruments yi1 and yi2 for
= τ + 2 and instruments yi1, yi2, and yi3 for t = τ + 3) are different.26 As in the previous case, since the bias correction
n II is redundant, the associated t test may perform worse than that from WG.

Supplementary Appendix H gives simulation results under a different set-up, where T − 1 is fixed at 30, N is either
30 or 60, the test horizon τ takes on four values (5, 10, 15, 20), and the convergence parameter ρ takes on five values
(−0.005,−0.01,−0.03,−0.05,−0.08), largely motivated by the empirical results from the next section. Overall, the II
method performs the best with virtually zero bias, the lowest RMSE, and generally the best empirical rejection rate over
the four test horizons under different degrees of convergence. The GMM performs the worst with the highest RMSE and
substantial size distortions. The OLS1 estimator performs somewhere in between. Additional results under various error

25 This is because in the first stage, the regression of yi2 − yi1 on yi1 and yi2 creates a perfect fit and thus the second-stage regression is the same
as OLS1.
26 Though it is not so evident in Table 6 due to numerical rounding.
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Table 6
Finite-sample performance of WG, GMM, OLS1, and II in DP-τ .
φ0 (N, T ) (100,7) (85,8) (60,11) (40,16) (30,21) (24,26) (20,31)
0.8 Bias WG −0.1 −0.0 −0.3 −0.5 −0.6 −0.6 −0.6

GMM −0.1 −0.0 −26.8 −11.1 −10.7 −8.9 −8.1
OLS1 −0.1 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0
II −0.1 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

RMSE WG 1.3 0.9 0.8 0.8 0.8 0.8 0.8
GMM 1.3 1.0 1718.7 19.9 13.9 10.9 9.6
OLS1 1.3 1.0 0.8 0.7 0.7 0.7 0.6
II 1.3 0.9 0.7 0.7 0.6 0.6 0.6

Size (%) WG 6.6 5.5 6.4 13.7 15.7 16.5 15.7
GMM 7.0 6.3 7.6 19.5 30.1 33.3 40.8
OLS1 7.0 6.8 5.5 6.3 5.8 6.8 7.5
II 6.8 6.5 5.1 5.9 5.9 6.1 5.6

0.5 Bias WG 0.0 0.0 −0.6 −0.9 −1.0 −0.9 −0.8
GMM 0.0 −0.0 5.6 −2.1 −3.2 −3.6 −3.7
OLS1 0.0 −0.0 −0.1 0.0 −0.0 −0.1 −0.0
II 0.0 0.0 −0.1 0.0 −0.0 −0.1 −0.0

RMSE WG 1.8 1.3 1.2 1.3 1.3 1.2 1.2
GMM 1.8 1.4 133.2 8.5 6.4 5.7 5.1
OLS1 1.8 1.4 1.2 1.0 1.0 0.9 1.0
II 1.8 1.3 1.1 0.9 0.8 0.8 0.8

Size (%) WG 5.1 5.0 9.5 18.2 19.2 19.5 18.4
GMM 5.9 4.4 6.3 9.2 13.4 20.9 19.4
OLS1 5.9 5.1 5.8 5.7 6.1 7.4 9.2
II 5.9 5.5 6.4 5.4 4.9 6.0 7.7

0.2 Bias WG 0.0 0.0 −0.6 −1.1 −1.1 −0.9 −0.8
GMM 0.0 0.0 5.2 −0.6 −1.5 −1.5 −1.7
OLS1 0.0 0.0 −0.0 −0.0 −0.1 −0.0 −0.0
II 0.0 0.0 0.0 −0.0 −0.1 −0.0 −0.0

RMSE WG 2.0 1.5 1.3 1.5 1.4 1.3 1.2
GMM 2.0 1.6 88.0 5.1 4.1 3.7 3.3
OLS1 2.0 1.7 1.4 1.2 1.1 1.1 1.1
II 2.0 1.5 1.1 1.0 0.9 1.0 0.9

Size (%) WG 5.6 3.9 8.3 22.1 19.7 16.6 14.7
GMM 5.6 5.2 5.3 7.6 10.7 11.5 13.6
OLS1 5.6 6.3 7.2 7.9 6.0 8.0 7.6
II 5.5 4.5 5.2 7.2 5.8 6.1 6.6

−0.2 Bias WG 0.1 −0.0 −0.7 −0.9 −0.8 −0.6 −0.6
GMM 0.1 −0.0 0.4 −0.2 −0.4 −0.6 −0.7
OLS1 0.1 −0.0 −0.0 0.1 −0.0 0.1 −0.0
II 0.1 −0.0 −0.0 0.0 −0.0 0.1 −0.0

RMSE WG 2.0 1.5 1.3 1.4 1.2 1.1 1.0
GMM 2.0 1.6 4.2 3.1 2.8 2.5 2.4
OLS1 2.0 1.6 1.4 1.2 1.1 1.1 1.1
II 2.0 1.5 1.1 1.0 1.0 0.9 0.9

Size (%) WG 5.1 4.2 8.5 16.8 14.4 9.7 9.0
GMM 5.8 5.7 5.5 7.0 9.8 10.0 12.1
OLS1 5.8 5.3 5.5 6.6 7.1 6.9 8.8
II 5.6 5.2 5.4 6.4 8.0 7.3 6.2

Notes: τ = 5, αi ∼ i.i.d.N(0, 1), yis = αi/(1 − φ0) + uis/

√
1 − φ2

0 , s = 0, . . . ,−(τ − 1), and uit ∼ i.i.d.N(0, 1). The bias, RMSE, and size results are
ertaining to the convergence parameter ρ = (φ − 1)/τ . For T > 10, GMM is Caselli et al.’s (1996) estimator and for T = 7, 8 it is based on the
irst differenced equation with lagged variables in level as instruments. Bias and RMSE are multiplied by 100.

istributions and time-series heteroskedasticity from the BCS and RML procedures of Alvarez and Arellano (2022) are
vailable upon request. Notably, when T is moderate, it is extremely difficult for one to use the robust BCS and RML and
he associated inferences can be very misleading.27 In contrast, the II estimator and its robust version perform very well.

.6. The sample Jacobian

Recall that in general one cannot check nonsingularity of G , but one can always check numerically the identification
ondition for a given sample W by examining the determinant of GN (θ) over a grid of values of θ. For all the simulations
n the previous subsections, a singular sample Jacobian has never happened and the II procedure (as well as the robust
ersion) never fails.

27 This is because the robust BCS and RML need to estimate T variance parameters. It takes substantially longer, ranging from about ten (T = 7)
o hundreds of times (T = 31) longer than the other estimates, to get the robust BCS and RML estimates. For example, when (N, T ) = (20, 31)
nd τ = 5, on a PC with Intel i9-9900k, it takes on average 0.018, 9.481, 10.174, and 9.531 seconds, respectively, for robust II, BCS, RML, and
oncentrated RML to estimate one simulated sample when uit ∼ i.i.d.N(0, 1). Thus the number of simulations used for DP-τ is kept at 1000 in this
ubsection. There are also occasions where the robust BCS and RML fail when T is not small.
20
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Fig. 2. Distribution of |GN (θ)| in DP(2).

Fig. 2 plots the distribution of |GN (θ)|, where GN (θ) is calculated from (10), in DP(2) simulated as in (37) with
it ∼ i.i.d.N(0, 1), φ01 = −0.9,−0.8, . . . , 0.9, and φ02 = −0.9,−0.8, . . . , 0.9.28 Each line plots the kernel density

from 1000 simulations of |GN (θ)| out of a particular combination of φ01 and φ02.29 So in Fig. 2, each panel contains 361
= 19 × 19) lines of densities across different combinations of φ01 and φ02. It is obvious that for all combinations of
01 and φ02, it never happens that GN (θ) becomes singular. Thus, one can straightforwardly implement the II procedure.
upplementary Appendix G also contains density plots of |GN (θ)|, where GN (θ) is calculated from (32), in DP(2) under
eteroskedasticity, as well as those for DP(3). Again, for all combinations of the autoregressive parameters, GN (θ) is
onsingular.

. An empirical study

The Standardized World Income Inequality Database (SWIID) by Solt (2009, 2016, 2020) is used in this section to study
hether inequality, measured by the Gini index in deviation from period mean, converged during 1985–2005 (T = 31)
ver different horizons for 63 developed and developing countries. As described in Solt (2020), the SWIID maximizes the
omparability of available income inequality data for the broadest possible sample of countries and years. Recent empirical
xamples that utilize this data set include Berman et al. (2017) and Heathcote et al. (2017). The newest version of this data
et and corresponding descriptions can be downloaded from the website https://fsolt.org/swiid/. Out of the 63 countries in

28 When a particular combination of φ01 and φ02 creates a dynamically nonstable process, the initial values are created as yis = αi + uis + x′

isβ0 ,
s = 0,−1 for DP(2). The same strategy is used for DP(3) in Supplementary Appendix G.
29 The default options in Matlab’s ksdensity are used to generate the plots.
21
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Table 7
Estimated convergence parameters.

GMM OLS1 II IIr
All τ = 5 −0.021 −0.160 −0.035 −0.035

(1.034) (13.861) (3.247) (3.249)
τ = 10 −0.002 −0.088 −0.059 −0.059

(0.064) (15.377) (5.435) (5.399)
τ = 15 0.019 −0.068 −0.060 −0.059

(0.616) (18.145) (7.075) (7.039)
τ = 20 −0.049 −0.046 −0.046

(14.624) (8.480) (8.480)
Developed τ = 5 0.019 −0.193 −0.079 −0.080

(0.542) (16.304) (4.729) (4.651)
τ = 10 0.043 −0.098 −0.087 −0.088

(0.788) (13.536) (7.592) (7.531)
τ = 15 0.069 −0.072 −0.066 −0.066

(0.846) (26.507) (10.430) (10.403)
τ = 20 −0.050 −0.050 −0.050

(13.252) (7.372) (7.372)
Developing τ = 5 −0.053 −0.120 −0.012 −0.012

(2.215) (7.936) (0.810) (0.858)
τ = 10 −0.052 −0.073 −0.038 −0.039

(1.871) (8.385) (2.639) (2.635)
τ = 15 −0.013 −0.059 −0.052 −0.052

(0.413) (6.749) (3.291) (3.268)
τ = 20 −0.047 −0.044 −0.044

(7.427) (4.667) (4.667)

Notes: t-ratio (in absolute value) inside parentheses. GMM is Caselli et al.’s (1996) estimator.

he sample, 33 are developed countries and the other 30 are developing countries.30 The list of countries in this study and
ummary statistics of Gini indices are provided in Supplementary Appendix I. It can be observed that the Gini index is on
verage higher in developing countries compared to developed countries, in line with the well-documented fact of higher
nequality in developing countries. The standard deviation (across all the countries) of the Gini index goes down over
ime. It is also the case for the group of developed countries, but not so obvious for the group of developing countries.31

Table 7 presents the estimated convergence parameter, namely, ρ̂ = (φ̂ − 1)/τ , as well as the associated t-ratio
(in absolute value, inside parentheses) for each group of countries with different convergence test horizons.32 Reading
Table 7, one can make the following observations. First, the GMM estimator of Caselli et al. (1996) delivers somewhat
unexpected results. For the whole sample, it gives insignificant estimates and for the group of developed countries, it
gives positive (though insignificant) estimated values of ρ.33 When the convergence parameter is positive, it implies
an explosive dynamic process and thus divergent inequality measure, which seems to be very implausible. Recall that
with T = 31, when τ = 15, for example, the GMM approach of Caselli et al. (1996) runs a regression yi,31 − yi,16 =

φ(yi,16 − yi,1) + ui,31 − ui,16 with instrument Zi = yi,1, which uses sample observations at t = 1, 16, 31 only. So the
unexpected results from the τ th-order difference GMM estimator of Caselli et al. (1996) are not really surprising. Second,
the II, together with its robust version, and OLS1 estimates appear to provide more plausible results, indicating strong
evidence of convergence in inequality among developed and developing countries and all the countries as a group over
the longer horizons (τ = 10, 15, 20). They also indicate that inequality converges faster in developed counties than
developing countries. Yet, when τ = 5, for developing countries, while the OLS1 estimate is still significant (and also
of a very high magnitude), the II and IIr estimates are in fact very insignificant. The estimated convergence parameters
from II and IIr, ranging from −0.012 to −0.052 for developing countries and −0.050 to −0.088 for developed countries,
are in fact consistent with estimates based on cross-country studies in the literature, see Chambers and Dhongde (2016)
and references therein. The estimated ρ̂ values from OLS1 when τ = 5 appear to be too high. Given the better and more
reliable performance of II and IIr relative to OLS1 in the Monte Carol experiments, it is more reasonable for one to conclude
that there is little evidence of convergence in inequality among developing countries over a 5-year horizon.

5. Concluding remarks and discussions

This paper proposes an estimation strategy for the classical higher-order dynamic panels. Instead of seeking instru-
ments based on lagged or differenced dependent variable, it is built on the simple WG estimator and solves numerically
a sample binding function that links model parameters and the sample data. The resulting estimator is shown to be

30 Based on the most recent World Bank country classification, developed countries are those with a GNI per capita of $12, 536 or more,
hile developing countries are upper-middle, lower-middle and low income countries with a GNI per capita less than $12, 536. For details, see
ttps://datahelpdesk.worldbank.org/knowledgebase/articles/906519.
31 The reduction of cross-country standard deviation over time signals the so-called sigma-convergence. Note that beta-convergence is necessary
ut not sufficient for sigma-convergence (e.g., Furceri, 2005).
32 Given the poor performance of the BCS and RML estimators when T is moderate, see the previous section, they are not included for consideration.
33 The White-type variance estimators are used for GMM and OLS1 to construct the t-ratios.
22
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onsistent, asymptotically normal, robust to the error distribution, and does not rely on some restrictive assumptions
n the initial observations. For the special case of DP(1), the differences in the literature regarding the inference results
re explained. Its good finite-sample properties, in terms of bias, RMSE, and empirical size for hypothesis testing, are
emonstrated by Monte Carlo simulations. This new estimator is used to study empirically whether inequality converges
mong 63 countries during the period 1985–2015. It gives strong evidence of convergence over the longer 10-year, 15-
ear, and 20-year horizons. However, there is much weaker evidence of convergence among developing countries over a
horter 5-year horizon.
Note that how the initial conditions are generated does not directly matter for the II estimation procedure, as long as

ssumption 5.iii is maintained, which is really innocuous. This is because E(W ′Au) is a function of φ0 (or is the same as
he expectation of Ê(W ′Au) in the case of time-series heteroskedasticity), but does not depend on the initial conditions.
hus given the data W , one can solve for the II estimator. Of course, they do have impact on the asymptotic variance of
he II estimator. Simulation results available upon request show that the performance of the II estimator is quite robust
cross different initial values. It should also be emphasized that the II approach in this paper does not restrict the panel
o be dynamically stable.

Lee (2012) considered the case when DP(q) is fitted to DP(p) when q ≤ p. This gives rise to omitted variable bias on
op of the fixed-effects bias. The misspecification bias does not disappear even as T → ∞. Thus Lee (2012) suggested
ither using penalized likelihood approach or conducting order selection before bias-correction. The essential idea behind
he first approach is that omitted lags introduce serial correlation in the error term and also in the score function, so
n autocorrelation-consistent estimator of the variance is needed. Such an approach, as one can expect, requires that
→ ∞. With serial correlation in the error term due to this kind of misspecification, E(u′

iMΦ−1
p Ltui) = tr(MΦ−1

p LtΣ i),
where the T × T matrix Σ i is not diagonal. How to arrive at some auxiliary statistic that is purely a function of data
and model parameters (but not the nuisance Σ i) such that it has the same expectation as u′

iMΦ−1
p Ltui and is robust to

any non-diagonal Σ i (so that one can follow the II strategy as in Section 2.6) is an open (and challenging) question. The
iterated GMM and related inference as discussed in Hansen and Lee (2021) may be worthwhile to explore. One can also
follow the second approach of Lee (2012) by using a model selection criterion (Lee and Phillips, 2015) and applying the
II procedure to the model picked up by the model selection criterion.34 The model selection criterion in Lee and Phillips
(2015) is consistent only if T → ∞ and it is left for future research to study the asymptotic distribution of the II estimator
under large T .
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Appendix A

The proofs of the distribution of the recentered estimator under time-series heteroskedasticity and Theorem 2 are very
similar to the case of the classical model and they are omitted.

Proof of distribution of recentered estimator

Supplementary Appendix C shows that Var(T−ηW ′Au) = O(N) and E(T−(η−1)W ′Au) = −σ 2T−ηNr = O(N). Further,
T−η(W ′AW − E(W ′AW )) = OP (

√
N) and T−ηE(W ′AW ) = O(N). By a Nagar-type (Nagar, 1959) expansion, one has

(T−ηW ′AW )−1

= {I + [T−ηE(W ′AW )]−1
[T−ηW ′AW − T−ηE(W ′AW )]}−1

[T−ηE(W ′AW )]−1

= [T−ηE(W ′AW )]−1

− [T−ηE(W ′AW )]−1
[T−ηW ′AW − T−ηE(W ′AW )][T−ηE(W ′AW )]−1

+ · · ·

= [T−ηE(W ′AW )]−1
+ OP (N−3/2). (38)

Accordingly,
√
N(θ̂ − θ0 − δ) =

√
N(T−ηW ′AW )−1T−ηW ′Au −

√
N[E(W ′AW )]−1E(W ′Au)

34 As shown in Lee’s (2012) simulations, the model-selection based bias-correction procedure works better than the penalized likelihood function
approach.
23
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=
√
N{[E(T−ηW ′AW )]−1

+ OP (N−3/2)}T−ηW ′Au

−
√
N[E(W ′AW )]−1E(W ′Au) + oP (1)

=
√
N[E(W ′AW )]−1

[W ′Au − E(W ′Au)]

+
√
NOP (N−3/2)T−ηW ′Au + oP (1)

=
√
N[E(W ′AW )]−1

[W ′Au − E(W ′Au)] + OP (1). (39)

ne sees that
√
N(θ̂−θ0 −δ) and

√
N[E(W ′AW )]−1

[W ′Au−E(W ′Au)] are not asymptotically equivalent, due to the OP (1)
term in (39), namely, in view of (38), the term introduced by

√
N{−[E(W ′AW )]−1

[W ′AW − E(W ′AW )][E(W ′AW )]−1
}W ′

u. With the OP (1) term

−
√
N[E(W ′AW )]−1

[W ′AW − E(W ′AW )][E(W ′AW )]−1W ′Au

= −
√
N[E(W ′AW )]−1

[W ′AW − E(W ′AW )][E(W ′AW )]−1E(W ′Au) + oP (1)

= −
√
N[E(W ′AW )]−1W ′AW [E(W ′AW )]−1E(W ′Au) +

√
N[E(W ′AW )]−1E(W ′Au) + oP (1)

=
√
N[E(W ′AW )]−1

[E(W ′Au) − W ′AWδ] + oP (1)

explicitly included, (39) becomes
√
N(θ̂ − θ0 − δ) =

√
N[E(W ′AW )]−1(W ′Au − W ′AWδ) + oP (1). (40)

or any ι ∈ Rm, {ι′(W iMui −W ′

iMW iδ)}Ni=1 is a sequence of independent random variables under Assumptions 1 to 5 and
yapunov’s central limit theorem can be invoked to show that

√
N(θ̂ − θ0 − δ)

d
→ N(0,∆), (41)

here

∆ = lim
N→∞

N[E(W ′AW )]−1Var(W ′Au − W ′AWδ)[E(W ′AW )]−1. (42)

When the OP (1) is excluded from (39),
√
N[E(W ′AW )]−1

[W ′Au − E(W ′Au)] d
→ N(0,Ω ), (43)

here

Ω = lim
N→∞

N[E(W ′AW )]−1Var(W ′Au)[E(W ′AW )]−1. (44)

Supplementary Appendices B and C discuss how to evaluate E(W ′AW ) and Var(W ′Au), respectively. The OP (1) term
appears to be ignored in BC when they presented the asymptotic distribution of

√
N(θ̂ − θ0 − δ) for DP(1).35

If dN = (W ′AW )−1E(W ′Au) is used as the recentering term, then
√
N(θ̂ − θ0 − dN ) =

√
N(W ′AW )−1

[W ′Au − E(W ′Au)]

=
√
N[E(W ′AW )]−1

[W ′Au − E(W ′Au)] + oP (1)
d

→ N(0,Ω ), (45)

nd thus
√
N(θ̂ − θ0 − d†

N ) =
√
N(W ′AW )−1(W ′Au + u′Auh),

=
√
N[E(W ′AW )]−1(W ′Au + u′Auh) + oP (1)

d
→ N(0,V ), (46)

where

V = lim
N→∞

[N−1E(W ′AW )]−1N−1Var(W ′Au + u′Auh)[N−1E(W ′AW )]−1, (47)

in which Var(W ′Au + u′Auh) is given by (D.3) in Supplementary Appendix D.

35 See their Eqs. (25) and (26), where the ‘‘V X ’’ corresponds to the Ω here. Their V X = σ 2Σ−1
WAW + σ 4tr(MCMC )Σ−1

WAW ek+1,1e′

k+1,1Σ
−1
WAW , where

WAW = plimN→∞N−1W ′AW and C = (I − φ0L)−1L, was based on Bun and Kiviet (2001) and Kiviet (1995). The V X was derived under the
ssumption of normality and the condition on the initial latent variable vi0 = yi0 − (1 − φ0)−1αi such that vi0 = E(vi0) (see the line proceeding
quation (32) of Kiviet (1995)). Under these conditions, Var(W ′Au) can be shown to be σ 2

[E(W ′AW )] + σ 4Ntr(MCMC )ek+1,1e′

k+1,1 and thus Ω can

e simplified to V X , see Supplementary Appendix E.1 and discussions in Section 2.4.1.
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roof of Theorem 1. By a first-order expansion, bN (θ̌) = bN (θ0) + [∂bN (θ0)/∂θ′
](θ̌ − θ0) + oP (N−1/2) = bN (θ0) + ĜN (θ̌ −

0) + oP (N−1/2), where ĜN = GN (θ̌). It follows that
√
N(θ̌ − θ0) = Ĝ

−1
N

√
N[bN (θ̌) − bN (θ0)] + oP (1)

= Ĝ
−1
N

√
N(θ̂ − θ0 − d†

N ) + oP (1)
d

→ N(0,V II ), (48)

here V II = G−1VG−1′ with G = plimN→∞ĜN = plimN→∞GN (θ0), provided that one can verify a technical condition,
amely, ∂b−1

N (θ)/∂θ′ is asymptotically locally equicontinuous at θ0, see Phillips (2012). For this, the following condition
s sufficient: for ε > 0, there exists a sequence sN → ∞ such that sN/

√
N → 0,

sup
∥sN (θ−θ0)∥<ε

∥GN (θ0)[GN (θ)−1
− GN (θ0)−1

]∥
a.s.
→ 0.

It is sufficient to consider ∥GN (θ0)[GN (θ)−1
− GN (θ0)−1

]∥ when the norm is sub-multiplicative (say, ∥ · ∥2). Then

∥GN (θ0)[GN (θ)−1
− GN (θ0)−1

]∥ = ∥GN (θ0)GN (θ)−1
[GN (θ0) − GN (θ)]GN (θ0)−1

∥

≤ ∥GN (θ0)∥ · ∥GN (θ)−1
∥ · ∥GN (θ0) − GN (θ)∥ · ∥GN (θ0)−1

∥.

Note that

∥GN (θ0) − GN (θ)∥ ≤

[
sup

θ̃

JN (θ̃)
]

∥(θ − θ0) ⊗ Im∥ ,

where θ̃ lies between θ and θ0 and JN (θ) = ∂GN (θ)/∂θ′ denote the m × m2matrix of derivative of GN (θ) with respect to
θ′, consisting of horizontally stacked m blocks of m × m matrices ∂GN (θ)/∂θj, j = 1, . . . ,m. Rewrite GN (θ) as

GN (θ) = Im +
2

T (T − 1)
(W ′AW )−1

(rp(φ)
0k

)
(y − Wθ)′AW

−
(y − Wθ)′A(y − Wθ)

T (T − 1)
(W ′AW )−1

(R(φ) Op×k
Ok×p Ok

)
.

Then

∂GN (θ)
∂θj

=
2

T (T − 1)
(W ′AW )−1

[(
∂rp(φ)
∂θj

0k

)
(y − Wθ)′ −

(
rp(φ)
0k

)
(Wem,j)′

]
AW

+
2(y − Wθ)′A(y − Wem,j)

T (T − 1)
(W ′AW )−1

(
R(φ) Op×k

Ok×p Ok

)
−

(y − Wθ)′A(y − Wθ)
T (T − 1)

(W ′AW )−1

(
∂R(φ)
∂θj

Op×k

Ok×p Ok

)
,

where ∂rp(φ)/∂θj is the same as the jth column of R(φ) for j = 1, . . . , p and equal to 0p for j = p + 1, . . . ,m, ∂R(φ)/∂θj
is a p× p matrix consisting of 1′Φ−1

p (φ)L jΦ−1
p (φ)L j2Φ−1

p (φ)L j11+ 1′Φ−1
p (φ)L j2Φ−1

p (φ)L jΦ−1
p (φ)L j11 in its (j1, j2) position,

j1, j2 = 1, . . . , p, for j = 1, . . . , p and equal to Op for j = p + 1, . . . ,m. Given Assumptions 1 to 5, one can show that at
= θ0 and for θ such that ∥sN (θ − θ0)∥ < ε, all the elements of GN (θ) and JN (θ) are bounded almost surely. Thus

sup
∥sN (θ−θ0)∥<ε

∥GN (θ0) − GN (θ)∥ ≤ sup
∥sN (θ−θ0)∥<ε

[
sup

θ̃

JN (θ̃)
]

∥(θ − θ0) ⊗ Im∥

≤

[
sup

θ̃

JN (θ̃)
] ⏐⏐⏐⏐ εsN

⏐⏐⏐⏐
a.s.
→ 0,

hich is sufficient to show sup∥sN (θ−θ0)∥<ε ∥GN (θ0)[GN (θ)−1
− GN (θ0)−1

]∥
a.s.
→ 0.

Proof of consistency of V̂ II

By writing M(y i − W iθ̌) = M[ui + W i(θ0 − θ̌)], one has, for v̂i defined in (12),

ˆ
′ ′ ˇ
vi = W iMui + W iMW i(θ0 − θ)
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n
p
t
n

A

R

A

A

A

A

A

A

A

B
B
B

B

+ [u′

iMui + (θ0 − θ̌)′W ′

iMW i(θ0 − θ̌) + 2(θ0 − θ̌)′W ′

iMui]ĥ
≡ vi + v̂1i + v̂2i + v̂3i,

where vi = W ′

iMui + u′

iMuih, v̂1i = W ′

iMW i(θ0 − θ̌), v̂2i = [(θ0 − θ̌)′W ′

iMW i(θ0 − θ̌) + 2(θ0 − θ̌)′W ′

iMui]ĥ, and
v̂3i = u′

iMui(ĥ−h). Note that θ0−θ̌ = OP (N−1/2), T−ηW ′

iMW i = OP (1) (from Supplementary Appendix B), T−(η−1)W ′

iMui =

OP (1) (from Supplementary Appendix C), and ĥ − h = (−(φ0 − φ̌)′R(φ̃)′, 0′

k)
′/[T (T − 1)], where φ̃ lies between φ0 and φ̌.

Recall that R(φ) = ∂rp(φ)/∂φ′ is a p × p matrix with 1′Φ−1
p (φ)L j2Φ−1

p (φ)L j11 in its (j1, j2) position, j1, j2 = 1, . . . , p, and
it can be verified that T−ηR(φ̃) = O(1). Further, E(u′

iMui) = σ 2(T − 1) and Var(u′

iMui) = σ 4
[2(T − 1) + γ2(T − 2 + T−1)].

Then T−ηv̂1i = OP (N−1/2), T−(η−3)v̂2i = OP (N−1/2) + T−1OP (N−1), and T−(η−1)v̂3i = OP (N−1/2). Thus it follows that
N−1∑N

i=1 v̂iv̂
′

i = N−1∑N
i=1 viv

′

i + oP (1), N−1∑N
i=1 v̂i = N−1∑N

i=1 vi + OP (N−1/2), vi − N−1∑N
i=1 vi = v̂i − N−1∑N

i=1 v̂i +

OP (N−1/2), and N−1∑N
i=1(v̂i −

¯̂v)(v̂i −
¯̂v)′ = N−1∑N

i=1(vi − v̄)(v̂i − v̄)′ + oP (1), where ¯̂v = N−1∑N
i=1 v̂i = OP (N−1/2) and

v̄ = N−1∑N
i=1 vi. Then under Assumptions 1 to 5, N−1Var(W ′Au + u′Auh) = N−1Var(

∑N
i=1 vi), which can be consistently

estimated by N−1∑N
i=1(vi − v̄)(v̂i − v̄)′ and also by N−1∑N

i=1(v̂i − ¯̂v)(v̂i − ¯̂v)′ and N−1∑N
i=1 v̂iv̂

′

i . Therefore, one can
claim that V̂ = N(W ′AW )−1(

∑N
i=1 v̂iv̂

′

i)(W
′AW )−1 consistently estimates V = limN→∞[N−1E(W ′AW )]−1N−1Var(W ′Au+

u′Auh)[N−1E(W ′AW )]−1. With all the elements of J (θ) bounded almost surely for θ in a neighborhood of θ0 (see Proof of
Theorem 1), Ĝ = GN (θ̌) is obviously consistent for G . Thus it follows that V̂ II = Ĝ

−1
V̂ Ĝ

−1′
is consistent for V II = G−1VG−1′.

For the case of v̂i defined in (35) when there is time-series heteroskedasticity, one can follow a similar procedure to
decompose v̂i as

v̂i = W ′

iMui −

⎛⎜⎜⎜⎝
(y − Wθ0)′ME1M(y − Wθ0)

...

(y − Wθ0)′MEpM(y − Wθ0)
0k

⎞⎟⎟⎟⎠

+ W ′

iMW i(θ0 − θ̌) −

⎛⎜⎜⎜⎜⎝
(θ0 − θ̌)′W ′

iME1MW i(θ0 − θ̌) − 2(θ0 − θ̌)′W ′

iME1Mui

...

(θ0 − θ̌)′W ′

iMEpMW i(θ0 − θ̌) − 2(θ0 − θ̌)′W ′

iMEpMui

0k

⎞⎟⎟⎟⎟⎠ ,
here for finite T , each E t , t = 1, . . . , p, is diagonal with O(1) elements. Thus replacing ME tM everywhere with M does
ot affect the orders of magnitudes of various terms in the above decomposition. Based on the arguments in the previous
aragraph, one can claim that N−1∑N

i=1 v̂iv̂
′

i consistently estimates N−1Var[W ′Au − Ê(W ′Au)]. Further, one can show
hat all the elements GN (θ) as defined in (32) and those of the derivative of GN (θ) are bounded almost surely for θ in a
eighborhood of θ0. Then Ĝ

−1
V̂ Ĝ

−1′
is consistent for G−1VG−1′.

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.09.003.
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