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Summary: This paper develops a new approach to forecasting a highly persistent time se-
ries that employs feasible generalized least squares (FGLS) estimation of the deterministic
components in conjunction with Mallows model averaging. Within a local-to-unity asymptotic
framework, we derive analytical expressions for the asymptotic mean squared error and one-
step-ahead mean squared forecast risk of the proposed estimator and show that the optimal
FGLS weights are different from their ordinary least squares (OLS) counterparts. We also pro-
vide theoretical justification for a generalized Mallows averaging estimator that incorporates
lag order uncertainty in the construction of the forecast. Monte Carlo simulations demonstrate
that the proposed procedure yields a considerably lower finite-sample forecast risk relative to
OLS averaging. An application to U.S. macroeconomic time series illustrates the efficacy of
the advocated method in practice and finds that both persistence and lag order uncertainty have
important implications for the accuracy of forecasts.
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1. INTRODUCTION

Over the past few decades, a variety of methods have been developed in both the statistics and the
econometrics literatures for estimation and inference with highly persistent time series. Following
Chan and Wei (1987) and Phillips (1987), a highly persistent time series is typically modelled as
one with an autoregressive root local to unity (α = 1 + c/T), thereby permitting analysis of the
stationary (|α| < 1) and the nonstationary (α = 1) cases within a unified asymptotic framework.
Local-to-unity limit theory has been fruitfully employed to develop efficient unit root tests (e.g.,
Elliott et al., 1996), uniformly valid confidence intervals in autoregressive models (e.g., Hansen
1999; Mikusheva, 2007) and robust inferential methods in predictive regressions (e.g., Phillips,
2014; 2015). The primary technical difficulty in this modelling framework arises from the fact
that the noncentrality parameter c cannot be consistently estimated.

While a substantial body of work has addressed issues related to estimation and inference, the
problem of forecasting a highly persistent time series has received less attention. The essence of
the forecasting problem lies in the bias–variance tradeoff, whereby imposing a unit root reduces
estimation uncertainty at the expense of potential model misspecification, while unrestricted
estimation can lead to high forecast risk as a result of variance inflation. Franses and Kleibergen
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84 M. Kejriwal and X. Yu

(1996) apply the restricted and unrestricted models to the Nelson–Plosser dataset and argue that
the restricted model is preferred in a variety of sample sizes and forecast horizons. Diebold and
Kilian (2000) suggest that unit root pretesting improves forecast accuracy relative to restricted or
unrestricted estimation. Kim (2001, 2003) and Clements and Kim (2007) investigate the impact
of various bias correction methods on point forecasts and prediction intervals for univariate
autoregressive models and find that bias correction delivers considerable gains in forecast accuracy
for unit root or near unit root autoregressive models.

Forecast combination, pioneered in the work of Bates and Granger (1969) and Granger and
Ramanathan (1984), provides a useful, practical approach to constructing forecasts that can
effectively capture the bias–variance tradeoff inherent in the individual forecasts. In the present
context of forecasting a highly persistent time series, Hansen (2010) suggests combining forecasts
from the restricted and unrestricted models with weights determined by optimizing a Mallows
criterion, designed to provide an approximately unbiased estimator of the in-sample asymptotic
mean squared error. Hansen’s (2010) results strongly caution against using the pretesting method,
which exhibits high risk over a range of persistence levels (values of c), while simulations show
that his Mallows model averaging forecast performs well relative to a number of commonly
employed methods and dominates the unrestricted forecast uniformly in terms of finite-sample
forecast risk.

In the standard stationary framework, the classic result of Grenander and Rosenblatt (1957)
shows that generalized least squares (GLS) and ordinary least squares (OLS) estimations of the
deterministic components are asymptotically equivalent, so that no efficiency gains are available
from employing the former, at least in large samples. In a local-to-unity setup, however, the situa-
tion is different. Phillips and Lee (1996) and Canjels and Watson (1997) document the reduction
in asymptotic variance afforded by GLS estimation, while its implications for forecasting are
explored in Stock (1996) and Ng and Vogelsang (2002).

Motivated by these findings, this paper develops a new approach to forecasting a highly per-
sistent time series that employs feasible generalized least squares (FGLS) estimation of the
deterministic components in conjunction with Mallows model averaging.1 Within a local-to-
unity asymptotic framework, we derive analytical expressions for the in-sample asymptotic mean
squared error (AMSE) and one-step-ahead mean squared forecast risk (MSFE) of the proposed
estimator and show that the optimal FGLS weights are different from their OLS counterparts.
We also provide theoretical justification for a generalized Mallows averaging estimator that in-
corporates lag order uncertainty in the construction of the forecast. Specifically, the generalized
Mallows criterion follows from an asymptotic framework where the coefficients of the lagged
differences are modelled as local to zero simultaneously with the largest autoregressive root being
modelled as local to unity. Monte Carlo simulations illustrate that the proposed procedure yields
considerably lower finite-sample forecast risk relative to OLS averaging, with the improvements
being particularly pronounced when the model includes a deterministic trend. Finally, a compara-
tive out-of-sample forecasting exercise applied to U.S. macroeconomic time series demonstrates
the potential of the advocated method and finds that both persistence and lag order uncertainty
have important implications for the accuracy of forecasts.

The remainder of the paper is organized as follows. Section 2 presents the model setup
and FGLS estimation procedures. Section 3 introduces our FGLS Mallows model averaging
estimator. Section 4 discusses general Mallow averaging strategies with both OLS and FGLS

1 In related work, Liu et al. (2016) propose model averaging based on feasible GLS to account for the presence of
heteroskedastic errors in a standard stationary regression framework.
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Generalized forecast averaging 85

estimation. Monte Carlo simulation results and comparisons are provided in Section 5. Section 6
presents the empirical application, and Section 7 concludes. The Online Supplement includes
three Appendices. Online Appendix A contains proofs of the theoretical results, Online Appendix
B contains detailed Monte Carlo results, and Online Appendix C contains additional empirical
results.

2. MODEL AND ESTIMATION

We consider an observed time series composed of deterministic and stochastic components as in
Hansen (2010):

yt = mt + ut

mt = β0 + β1t + ... + βptp

ut = αut−1 + α1�ut−1 + · · · + αk�ut−k + et

α = 1 + ac

T
, a = 1 − α1 − · · · − αk, c ≤ 0, (2.1)

where p ∈ {0, 1} is the order of the trend component, and the stochastic component ut follows an
autoregressive process of order (k + 1) driven by the innovations et. The persistence parameter
α is modelled as local to unity, with c = 0 corresponding to the unit root case and c < 0 to the
stationary case. The true lag order k is assumed known in this section. Lag order uncertainty
will be addressed in Section 4. The initial observations are set at u0, u−1, ···, u−k = Op(1)2. Our
analysis is based on the following assumptions.

ASSUMPTION 2.1 The sequence {et } is a martingale difference sequence with E(et|et − 1,
et−2,...) = 0 and E(e2

t |et−1, et−2,...) = σ 2.

ASSUMPTION 2.2 All roots of A(L) = 1 − ∑k
i=1 αiL

i lie outside the unit circle.

Assumptions 2.1 and 2.2 are standard and made in Hansen (2010), thereby allowing comparison
with his analysis. We denote the optimal (infeasible) mean squared error minimizing one-step-
ahead forecast as yt + 1|t. It is the conditional mean μt + 1 given the true parameter values, namely

μt+1 = mt+1 + α(yt − mt ) + α1(�yt − �mt ) + · · · + αk(�yt−k+1 − �mt−k+1). (2.2)

While μt + 1 is unique, its feasible counterpart is not. Estimation of the conditional mean is as-
sociated with two important sources of uncertainty. The first emanates from uncertainty regarding
the nature of persistence, given that the parameter c is unknown and cannot be consistently esti-
mated. Unrestricted estimation (i.e., simple OLS) avoids omitted variable bias, while restricted
(c = 0) regression offers the possibility to achieve variance reduction. The local-to-unity param-
eterization ensures that squared model biases and estimator variances have the same order of
magnitude. In order to optimize the bias–variance tradeoff, Hansen (2010) proposes averaging
the unrestricted and restricted estimators with weights determined according to the Mallows cri-
terion, which is designed to provide an approximately unbiased estimate of the in-sample AMSE.
He derives analytical expressions for the AMSE and MSFE of unrestricted, restricted, pretest
and the Mallows model averaging (MMA) estimators and finds that they are functions only of c,
which facilitates graphical comparisons and provides the evolving patterns of the forecast risk of

2 The conclusion for the subsequent analysis will not be affected as long as the initial observations are op(T1/2).
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alternative methods with respect to c. His theoretical and numerical results support the use of the
MMA estimator relative to its competitors.

A second source of uncertainty results from estimating the deterministic component with highly
persistent errors. Grenander and Rosenblatt (1957) show that OLS and GLS estimates of the trend
component are asymptotically equivalent in the standard stationary framework (|α| < 1, α fixed).
In the local-to-unity framework, however, Phillips and Lee (1996) and Canjels and Watson (1997)
establish that GLS can be asymptotically more efficient than OLS with respect to estimation of
the trend parameters, while Ng and Vogelsang (2002) provide analytical and simulation evidence
comparing OLS with two different FGLS estimators, namely those based on the Cochrane–
Orcutt (CO) and Prais–Winsten (PW) transformations, and find that FGLS based on the latter
transformation generally dominates the others in terms of forecast accuracy.

Our paper aims to integrate FGLS estimation with MMA to investigate if further improvements
in forecasting performance can be achieved in the presence of the two aforementioned sources of
uncertainty. Specifically, we propose an averaging strategy combining unrestricted and restricted
FGLS estimators, whose weights are determined by a Mallows criterion. In what follows, the
unrestricted and restricted FGLS estimates of μt are denoted by μ̂t and μ̃t , respectively. We first
state how unrestricted FGLS estimation works for model (2.1). For brevity, we enumerate the
steps only for p = 1, with obvious modifications in place for p = 0.

Step 1. Estimate by OLS the regression

yt = z′
tβ

∗ + αyt−1 + α1�yt−1 + · · · + αk�yt−k + εt , t = k + 2, k + 3, ..., T , (2.3)

where zt = (1, t)
′
, β∗ = (β∗

0 , β∗
1 )′. Denote the estimate of α by α̇.

Step 2. Consider the PW transformation to quasi-difference yt and zt: for t = 2, 3, ..., T,
y+

t = yt − α̇yt−1 , z+
t = zt − α̇zt−1, with y+

1 = y1 and z+
1 = z1.

Step 3. Regress quasi-differenced data y+ on z+ to get trend estimates: β̈ = (z+′
z+)−1(z+′

y+).
Step 4. Construct detrended data ût = yt − z′

t β̈, regress detrended data on its lags:

ût = αût−1 + α1�ût−1 + · · · + αk�ût−k + ξt , t = k + 2, ..., T . (2.4)

Obtain autoregressive parameter estimates α̈, α̈1, · · · , α̈k .
Step 5. Construct the feasible one-step-ahead forecast ŷT +1|T = μ̂T +1 = z′

T +1β̈ + α̈(yT −
z′
T β̈) + α̈1(�yT − �z′

T β̈) + · · · + α̈k(�yT −k+1 − �z′
T −k+1β̈).

To obtain the restricted FGLS estimate μ̃t , the procedure is the same as that outlined above,
except that we impose α = 1 in each step.3 For p = 0, the restricted FGLS estimate is identical
to the restricted OLS estimate in Hansen (2010), while the two are asymptotically equivalent for
p = 1. The difference in finite samples for the latter case arises from the difference between one-
step estimation (Hansen, 2010) and two-step estimation (detrend first and then estimate the lag
parameters separately). The large-sample analysis for the restricted FGLS estimate thus directly
follows from Hansen (2010) and is not repeated here to save space.

To evaluate the quality of the unrestricted FGLS estimator, we derive expressions for the
in-sample AMSE and the one-step-ahead MSFE as in Hansen (2010). To this end, define c̈ =
limT →∞ T (α̈ − 1)/a with c̈0 and c̈1 denoting the limits in the p = 0 and p = 1 cases, respectively.
Next, define the stochastic process

Up(c, a, r) =
{

(c̈0 − c)Jc(r)
γ1(1 − cr) + (c̈1 − c)P (r)

for p = 0
for p = 1,

3 The procedures were also implemented using the Roy and Fuller (2001) bias correction. The results were found to
be qualitatively similar and hence are not reported. They are available upon request.
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Generalized forecast averaging 87

where γ1[P (.)] is a random variable [stochastic process] depending on a and c. Explicit ex-
pressions for these quantities are provided in Online Appendix A. We then have the following
result.

THEOREM 2.1 Under Assumptions 2.1 and 2.2,

(a) (AMSE) m1(c, a, p, k) = limT →∞ 1
σ 2

∑T
t=1 E(μ̂t − μt )2 = E

[∫ 1
0 Up(c, a, r)2dr

]
+ k ≡

m1(c, a, p) + k.
(b) limc → −∞m1(c, a, p, k) = 1 + p + k.
(c) (MSFE) f1(c, a, p, k) = limT →∞ T

σ 2 E(μ̂T +1 − μT +1)2 = E
[
Up(c, a, 1)2

] + k.

REMARK 2.1 Hansen (2010, Theorem 2.1) shows that the in-sample AMSE of the unconstrained
OLS estimate is 2 + p + k, while our result shows that in the FGLS case, the in-sample AMSE is
only 1 + p + k. This reduction reflects the fact that FGLS effectively eliminates the uncertainty
about the unknown mean. This result thus directly quantifies the improvement from FGLS
forecasting in local-to-unity models. Moreover, Theorem 3.2 extends Ng and Vogelsang’s (2002)
asymptotic analysis to models with more than one autoregressive lag.

REMARK 2.2 The random process Up(c, a, .) depends not only on c but also on a (for p = 1).
This is different from the OLS case, where the in-sample AMSE of the deterministic component
and the AR(1) component are independent of the short-run dynamics. Thus m1(c, a, p) depends
on a for fixed c but becomes independent of a as c → −∞.

With the restricted and unrestricted FGLS estimators in place, the GLS averaging estimator
for a given weight vector [w, 1 − w], w ∈ [0, 1] is defined as

μ̂t (w) = wμ̂t + (1 − w)μ̃t .

Define the stochastic process Vp(c, .) as

Vp(c, r) =
{ −cJc(r)

−cJ̄c(r) + W (1)
for p = 0
for p = 1

with the associated quantities m0(c, p) = E
[∫ 1

0 Vp(c, r)2dr
]
, m01(c, a, p) =

E
[∫ 1

0 Up(c, a, r)Vp(c, r)dr
]
, f1(c, a, p) = E[Up(c, a, 1)2], f0(c, p) = E[Vp(c, 1)2],

f01(c, a, p) = E[Up(c, a, 1)Vp(c, 1)].
The in-sample AMSE and MSFE of the averaging estimator are given in the following

corollary.

COROLLARY 2.1 (a) mw(c, a, p, k) = limT →∞ 1
σ 2

∑T
t=1 E[μ̂t (w) − μt ]2 = w2m1(c, a, p) +

(1 − w)2m0(c, p) + 2w(1 − w)m01(c, a, p) + k.
(b) fw(c, a, p, k) = limT →∞ T

σ 2 E(μ̂T +1(w) − μT +1)2 = w2f1(c, a, p) + (1 − w)2f0(c, p) +
2w(1 − w)f01(c, a, p) + k.

(c) limc → 0m01(c, a, p) = p.

As an alternative strategy, one can perform a pretest to choose between the restricted and
unrestricted forecasts. Stock (1996) and Diebold and Kilian (2000) show that pretesting is useful
for the selection of forecasting models, while Hansen’s (2010) analysis cautions against pretesting
owing to the high finite-sample forecast risk for an intermediate range of the parameter (c)
space. In the GLS framework, we adopt the Dickey–Fuller GLS (DFGLS) t-test proposed by
Elliott et al. (1996) with the lag length selected using the modified Akaike information criterion
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(MAIC) proposed by Ng and Perron (2001). We denote the pretest estimator μ̂
pt
t = μ̂t1(DFGLS ≤

cvp) + μ̃t1(DFGLS > cvp). The critical values cvp for p = 0, 1 are –1.98 and –2.91, respectively.
Elliott et al. (1996) show that

DFGLS →
{

DFGLS
0 = 1

2 (Jc(1)2 − 1)/(
∫ 1

0 Jc(r)2dr)1/2

DFGLS
1 = 1

2 (Vc(1, c̄)2 − 1)/(
∫ 1

0 Vc(r, c̄)2dr)1/2

if p = 0
if p = 1,

where

Vc(r, c̄) = Jc(r) − r[λJc(1) + 3(1 − λ)
∫ 1

0
sJc(s)ds]

λ = (1 − c̄)/(1 − c̄ + c̄2/3), c̄ = −7[1(p = 0)] − 13.5[1(p = 1)].

The in-sample AMSE and one-step MSFE of the DFGLS pretest estimator are summarized in the
following corollary.

COROLLARY 2.2 (a) mpt (c, a, p, k) = limT →∞ 1
σ 2

∑T
t=1 E(μ̂pt

t − μt )2 =
E

[∫ 1
0 Up(c, a, r)2drI (DFGLS

p ≤ cvp)
]

+E
[∫ 1

0 Vp(c, r)2drI (DFGLS
p > cvp)

]
+ k.

(b) fpt (c, a, p, k) = limT →∞ T
σ 2 E(μ̂pt

T +1 − μT +1)2 = E
[
Up(c, a, 1)2I (DFGLS

p ≤ cvp)
] +

E
[
Vp(c, 1)2I (DFGLS

p > cvp)
] + k.

Figure 1 presents the in-sample AMSE and MSFE of various OLS/GLS estimators for p = 1.4

These include the FGLS pretest estimator (Pretest-GLS), unrestricted FGLS estimator (Unres-
GLS), FGLS Mallows averaging estimator (GLS-Ave) and GLS optimal (infeasible) averaging
estimator (GLS-Ave-Opt), as well as their OLS counterparts with corresponding labelling. It
is clear that for each type of estimator (unrestricted, pretest, averaging), FGLS performs better
than its OLS counterpart in terms of both in-sample AMSE and MSFE, except for the pretest
estimator at values of c close to 0, where OLS and FGLS are comparable to each other. The
relative performance among different FGLS estimators is similar to that of the OLS estimators
as analysed in Hansen (2010). Furthermore, while pretesting continues to incur high risk even
when employing the more efficient unit root test, FGLS averaging leads to uniformly lower risk
compared with OLS averaging. Finally, the ranking of the estimators is invariant to whether
evaluation is according to AMSE or MSFE. Similar results were obtained for p = 0, although the
improvements from using FGLS are more discernible for p = 1...

3. FGLS MALLOWS AVERAGING

The Mallows (1973) criterion, which provides an unbiased estimate of the in-sample AMSE,
was originally designed as an information criterion for the purpose of model selection which
provides an unbiased estimate of the in-sample AMSE. The seminal work of Hansen (2007,
2008) has spawned a vast literature that employs MMA for estimation and forecasting. The
Mallows criteria for the unrestricted and restricted models based on the FGLS estimates are as
follows:

M0(c, a, p, k) = T σ̃ 2 + 2σ̂ 2(m01(c, a, p) + k), (3.1)

4 These plots are computed on a grid of 101 evenly spaced points from −20 to 0 for an AR(1) model (a = 1). We
approximate the limiting distributions by simulating the random variables/processes using T = 1000. The number of
replications is 500,000.
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Figure 1. In-sample AMSE/MSFE of OLS and GLS estimators, p = 1.

M1(c, a, p, k) = T σ̂ 2 + 2σ̂ 2(m1(c, a, p) + k), (3.2)

where σ̂ 2 and σ̃ 2 are, respectively, the estimates of σ 2 from the unrestricted and restricted models,
i.e., σ̂ 2 = T −1 ∑T

t=1(yt − μ̂t )2, σ̃ 2 = T −1 ∑T
t=1(yt − μ̃t )2.

As in Hansen (2010), the dependence of M0 and M1 on the unknown parameter c makes
them infeasible in practice. Moreover, unlike OLS, the expressions in the FGLS case are now
complicated by dependence on the short-run dynamics through the parameter a. We suggest
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obtaining feasible rules by taking limits of these expressions. In particular, we have

M0 = T σ̃ 2 + 2σ̂ 2(lim
c→0

m01(c, a, p) + k)

M1 = T σ̂ 2 + 2σ̂ 2( lim
c→−∞ m1(c, a, p) + k).

Fortunately, from Theorem 3.2 and Corollary 2.1, we can obtain specific values for these criteria
that are independent of a. Specifically, using limc → 0m01(c, a, p) = p and limc → −∞m1(c, a, p)
= 1 + p, we have

M0 = T σ̃ 2 + 2σ̂ 2(p + k), (3.3)

M1 = T σ̂ 2 + 2σ̂ 2(1 + p + k). (3.4)

A Mallows selection estimator is then easily obtained as the rule of picking the unrestricted model
when FT = T ( σ̃ 2−σ̂ 2

σ̂ 2 ) ≥ 2. The following result shows that the criteria M0(c, a, p, k) and M1(c,
a, p, k) are asymptotically unbiased estimates of the AMSE after normalization and evaluating
the quantities at the limits of c.

THEOREM 3.1 Under Assumptions 2.1 and 2.2,

lim
c→0

lim
T →∞

EM0(c, a, p, k)

σ 2
− T = lim

c→0
m0(c, p) + k,

lim
c→−∞ lim

T →∞
EM1(c, a, p, k)

σ 2
− T = lim

c→−∞ m1(c, a, p) + k.

For a given weight vector [w, 1 − w], we construct the Mallows criterion for the averaging
estimator as

Mw(c) = T σ̂ 2(w) + 2σ̂ 2[w{m1(c, a, p) + k} + (1 − w){m01(c, a, p) + k}],
where σ̂ 2(w) = T −1 ∑T

t=1[yt − μ̂t (w)]2. The feasible version of this criterion, using the previous
results, is

Mw = T σ̂ 2(w) + 2σ̂ 2(w + p + k). (3.5)

The Mallows-selected weight ŵ is derived from minimizing (3.5) over w ∈ [0, 1]. The solution
is

ŵ =
{

1 − 1/FT

0
if FT > 1
otherwise.

The Mallows averaging estimator is then defined as

μ̂a
t = ŵμ̂t + (1 − ŵ)μ̃t =

{
μ̃t

(1 − 1
FT

)μ̂t + 1
FT

μ̃t

if FT ≤ 1
otherwise.

(3.6)

4. GENERAL MALLOWS AVERAGING

The foregoing analysis assumes that the true lag order k is known. In practice, the lag order
uncertainty needs to be addressed, since omitting relevant lags will contribute to misspecification
bias while including too many lags will lead to variance inflation. The traditional approach has
been to employ model selection rules such as standard information criteria to choose the number
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Generalized forecast averaging 91

of lags. Hansen (2010) proposes an alternative approach that averages over different lag orders
in addition to averaging over the unit root restriction. In Section 4.1, we first provide theoretical
justification for Hansen’s general Mallows averaging (GMA) criterion that incorporates both lag
order uncertainty and persistence uncertainty. The analysis is subsequently extended to the FGLS
setting in Section 4.2.

4.1. GMA for OLS

To obtain Hansen’s (2010) GMA criterion, we adopt a local asymptotic framework that models
the coefficients of the short-run dynamics in a O(T−1/2)-neighbourhood around zero in addition to
the O(T −1) local-to-unity parameterization for the persistence parameter α, i.e., αi = δi/

√
T for

i = 1, ..., k, where δ = (δ1, ..., δk)
′
is fixed and independent of T. This particular rate ensures that

the squared bias from omitting relevant lags is of the same order as the variance from estimating
additional lags. In contrast, a fixed specification for the lagged coefficients would imply that the
misspecification bias diverges to infinity with the sample size. The use of local asymptotic analysis
in the frequentist model averaging literature was pioneered by Hjort and Claeskens (2003).

We consider restricted regression (setting c = 0) and unrestricted regression, each with l lags.
We include sub-models with l ∈ {0, 1, ..., K}, K ≥ k, with the corresponding unrestricted and
restricted estimates denoted by μ̆t (l) and μ̃t (l), respectively.5 This gives a total of 2(K + 1)
sub-models. We first analyse the unrestricted regression with l lags:

yt = z′
tβ

∗ + αyt−1 + α1�yt−1 + · · · + αl�yt−l + εt , t = l + 2, ..., T . (4.1)

The feasible forecast is μ̆t (l) = z′
t β̆

∗ + ᾰyt−1 + ᾰ1�yt−1 + · · · + ᾰl�yt−l . Define the quantities

mols
0K (c, δ, p, l) = lim

T →∞
1

σ 2

T∑
t=1

E(μ̃t (l) − μt )(μ̆t (K) − μt ),

mols
1K (c, δ, p, l) = lim

T →∞
1

σ 2

T∑
t=1

E(μ̆t (l) − μt )(μ̆t (K) − μt ).

The Mallows criteria for restricted and unrestricted OLS estimators are constructed as

Mols
0 (c, δ, p, l) = T σ̃ 2

l + 2σ̆ 2
Kmols

0K (c, δ, p, l),

Mols
1 (c, δ, p, l) = T σ̆ 2

l + 2σ̆ 2
Kmols

1K (c, δ, p, l),

where σ̆ 2
j = T −1

T∑
t=1

(yt − μ̆t (j ))2, j = l, K and σ̃ 2
l = T −1

T∑
t=1

(yt − μ̃t (l))2. The following the-

orem establishes that the criteria Mols
0 and Mols

1 are asymptotically unbiased estimates of the
AMSE after normalization.

5 We use the notation μ̃t to denote both the restricted OLS and the restricted FGLS estimation, although it must be
borne in mind that they are equivalent in finite samples only for p = 0, while the equivalence holds asymptotically for
p = 1.
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THEOREM 4.1 Let mols
0 (c, δ, p, l) = lim

T →∞
1
σ 2

T∑
t=1

E(μ̃t (l) − μt )2, mols
1 (c, δ, p, l) =

lim
T →∞

1
σ 2

T∑
t=1

E(μ̆t (l) − μt )2. Then we have, under Assumptions 2.1 and 2.2,

EMols
0 (c, δ, p, l)

σ 2
− T → mols

0 (c, δ, p, l),

EMols
1 (c, δ, p, l)

σ 2
− T → mols

1 (c, δ, p, l).

As shown in the proof of Theorem 4.4, the quantities mols
0K and mols

1K are infeasible as they
depend on c. To obtain their feasible versions, we evaluate them at the limits of c, which gives us
the following result.

THEOREM 4.2 Under Assumptions 2.1 and 2.2,

lim
c→0

mols
0K (c, δ, p, l) = p + l,

lim
c→−∞ mols

1K (c, δ, p, l) = 2 + p + l.

The feasible Mallows criteria are then obtained as

Mols
0 (p, l) = T σ̃ 2

l + 2σ̆ 2
K (p + l),

Mols
1 (p, l) = T σ̆ 2

l + 2σ̆ 2
K (2 + p + l).

Now, the averaging estimator over all 2(K + 1) sub-models can be constructed as

μ̆a
t (w) =

K∑
l=0

(w0l μ̆t (l) + w1l μ̃t (l)), (4.2)

where the weights are non-negative and sum to one: w1l ≥ 0, w0l ≥ 0,
∑K

l=0(w0l + w1l) = 1.
Hence the feasible Mallows averaging criterion is obtained as

Mols
w (p,K) = T σ̆ 2(w) + 2σ̆ 2

K (
K∑

l=0

[w0l l + w1l(2 + l)] + p),

where σ̆ 2(w) = T −1 ∑T
t=1(yt − μ̆a

t (w))2.

4.2. GMA for FGLS

We now develop the asymptotics of GMA for FGLS. Let the unrestricted FGLS estimate from the
sub-model with l lags be denoted μ̂t (l), l ∈ {0, 1, ..., K}. Our goal is to combine the estimates
μ̃t (l) with μ̂t (l) for each l and average over all the sub-models. The procedure for unrestricted
FGLS estimation with l lags is exactly the same as that outlined in Section 2. Analogous to the
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OLS case, define the quantities

m
gls

0K (c, a, δ, p, l) = lim
T →∞

1

σ 2

T∑
t=1

E(μ̃t (l) − μt )(μ̂t (K) − μt ),

m
gls

1K (c, a, δ, p, l) = lim
T →∞

1

σ 2

T∑
t=1

E(μ̂t (l) − μt )(μ̂t (K) − μt ).

The Mallows criteria based on FGLS estimation are constructed as

M
gls

0 (c, a, δ, p, l) = T σ̃ 2
l + 2σ̂ 2

Km
gls

0K (c, a, δ, p, l),

M
gls

1 (c, a, δ, p, l) = T σ̂ 2
l + 2σ̂ 2

Km
gls

1K (c, a, δ, p, l),

where σ̂ 2
j = T −1

T∑
t=1

(yt − μ̂t (j ))2, j = l, K . The asymptotic unbiasedness of M
gls

0 and M
gls

1 for

the AMSE are established in the following result.

THEOREM 4.3 Let m
gls

0 (c, a, δ, p, l) = lim
T →∞

1
σ 2

T∑
t=1

E(μ̃t (l) − μt )2 =

mols
0 (c, δ, p, l), m

gls

1 (c, a, δ, p, l) = lim
T →∞

1
σ 2

T∑
t=1

E(μ̂t (l) − μt )2. Then we have, under As-

sumptions 2.1 and 2.2,

lim
c→0

lim
T →∞

EM
gls

0 (c, a, δ, p, l)

σ 2
− T = lim

c→0
m

gls

0 (c, a, δ, p, l),

lim
c→−∞ lim

T →∞
EM

gls

1 (c, a, δ, p, l)

σ 2
− T = lim

c→−∞ m
gls

1 (c, a, δ, p, l).

The feasible versions of m
gls

0K and m
gls

1K are obtained from their respective limits.

THEOREM 4.4 Under Assumptions 2.1 and 2.2,

lim
c→0

m
gls

0K (c, a, δ, p, l) = p + l,

lim
c→−∞ m

gls

1K (c, a, δ, p, l) = 1 + p + l.

The feasible Mallows criteria are then obtained as

M
gls

0 (p, l) = T σ̃ 2
l + 2σ̂ 2

K (p + l),

M
gls

1 (p, l) = T σ̂ 2
l + 2σ̂ 2

K (1 + p + l).

The averaging estimator μ̂a
t (w) over all 2(K + 1) sub-models is constructed in the same way as in

(4.2) except that μ̂(l) replaces μ̆(l). Hence the feasible Mallows averaging criterion is obtained
as

Mgls
w (p,K) = T σ̂ 2(w) + 2σ̂ 2

K (
K∑

l=0

[w0l l + w1l(1 + l)] + p),

where σ̂ 2(w) = T −1 ∑T
t=1(yt − μ̂a

t (w))2.
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5. MONTE CARLO SIMULATIONS

This section reports the results of a set of Monte Carlo experiments to assess the adequacy of
the asymptotic approximations in finite samples and evaluate the effectiveness of the proposed
approach relative to existing methods. To facilitate a direct comparison, we adopt the same design

as in Hansen (2010). In particular, the sample size T ∈ {50, 200}, the innovations et

i.i.d∼ N (0, 1),
the trend parameters are set at β0 = β1 = 0, and the true lag order k ∈ {0, 4, 8}. Two data
generating processes (DGPs) are considered. The first DGP sets α1 = · · · = αk = 0 in (2.1), while
the second DGP sets αj = −( − θ )j for j = 1, ..., k and θ = 0.6. Results are obtained for p ∈ {0, 1}.
To save space, we present the results only for the second DGP and for p = 1. Qualitatively similar
results were found for the first DGP and for p = 0, although the improvements offered by the
proposed procedure are more pronounced for p = 1 than for p = 0. The full set of results is
available in Online Appendix B.

5.1. Forecast risk with known lag order

We first assume knowledge of the true order k, which enables us to delineate the effect of
persistence uncertainty on the forecasts. The parameter c varies from –20 to 0, which implies
a range for α of [0.6, 1] for T = 50 and a range of [0.9, 1] for T = 200. For each parameter
configuration, the finite-sample forecast risk T E[(μ̂T +1 − μT +1)2] is calculated for six estimators:
the unrestricted FGLS estimator, DFGLS pretest estimator and FGLS Mallows averaging estimator,
together with their three OLS counterparts. The risk is calculated using 500,000 Monte Carlo
replications.

Figure 2 presents the results for p = 1. It is clear that FGLS incurs a lower risk than OLS for
all three types of estimator: unrestricted, pretest and averaging. This suggests that the efficiency
gain of using FGLS does not lie only in the unrestricted case, but is more broadly applicable
to the pretesting and averaging schemes. Moreover, as in the OLS case illustrated by Hansen
(2010), the FGLS pretest estimator exhibits high risk and the FGLS Mallows averaging estimator
uniformly dominates the unrestricted FGLS estimator. In terms of comparison with OLS model
averaging, the risk of the proposed estimator is uniformly smaller.6 Overall, our FGLS Mallows
averaging estimator performs well and displays the lowest risk among all estimators for c < −3
when p = 1.

5.2. Forecast risk with unknown lag order

We next consider the situation where the number of autoregressive lags k is unknown. Three
types of estimator are compared: (1) the Mallows selection estimator (denoted S-OLS/FGLS),
which selects unrestricted models from AR(1) through AR(K + 1), i.e., μ̂t (0) through μ̂t (K);
(2) the Mallows averaging estimator (denoted PA-OLS/FGLS, PA abbreviating partial av-
eraging) that averages over this set of unrestricted models; (3) the general averaging esti-
mator (denoted GA-OLS/FGLS), which combines all models from {μ̂t (l)} and {μ̃t (l)} for
l ∈ {0, 1, ..., K}.

6 However, this is only observed in simulations; to have a concrete judgment, one might follow Zhang, Ullah and Zhao
(2016) to derive sufficient conditions, which involves sample size, the number of parameters and possibly the persistence
parameter.
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Figure 2. Forecast risk of OLS averaging and GLS averaging, p = 1.

Figure 3 present the results for the six forecast methods when p = 1. All three types
of FGLS estimator uniformly dominate their OLS counterparts. The risk reduction is sub-
stantial. Overall, FGLS general averaging achieves the uniformly lowest risk among all av-
eraging/selection strategies when p = 1. The results are very similar across all K and T.
Finally, a comparison of Figures 1 and 2 indicates that the payoff from using FGLS av-
eraging relative to unrestricted FGLS is more prominent when the lag length is treated as
unknown.
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Figure 3. Forecast risk of general OLS averaging and general GLS averaging, p = 1.

6. EMPIRICAL APPLICATION

This section undertakes a pseudo out-of-sample forecasting exercise using a set of U.S. macroeco-
nomic time series to (1) evaluate the performance of the proposed approach relative to OLS-based
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Table 1. Percentage wins/losses of different forecasting methods.

Method S-GLS PA-GLS GA-GLS PT-GLS S-OLS PA-OLS GA-OLS PT-OLS ALL

S-GLS 3.25 4.88 45.53 80.49 27.64 18.70 43.90 2.44
PA-GLS 96.75 21.14 83.74 95.12 85.37 52.03 81.30 13.01
GA-GLS 95.12 78.86 93.50 100.00 92.68 73.98 93.50 53.66
PT-GLS 54.47 16.26 6.50 77.24 42.28 21.95 50.41 4.88
S-OLS 19.51 4.88 0.00 22.76 4.88 0.81 23.58 0.00
PA-OLS 72.36 14.63 7.32 57.72 95.12 6.50 59.35 0.81
GA-OLS 81.30 47.97 26.02 78.05 99.19 93.50 78.05 23.58
PT-OLS 56.10 18.70 6.50 49.59 76.42 40.65 21.95 1.63

Note: This table shows the percentage of the 123 series for which a method listed in a row outperforms a method in a
column, as well as all other methods (last column.

methods; and (2) assess the relative contribution of persistence uncertainty and lag order uncer-
tainty in determining the accuracy of forecasts. We employ the FRED-MD dataset compiled by
McCracken and Ng (2016) and maintained/updated at the Federal Reserve Bank of St. Louis.
Our analysis is based on 123 monthly time series over the period 1960:02–2018:12.7 McCracken
and Ng (2016) provide a set of seven codes in order to transform the series to stationarity: (1) no
transformation; (2) �yt ; (3) �2yt; (4) log(yt); (5) �log(yt); (6) �2 log(yt); (7) �(yt/yt − 1 − 1).
In order to ensure that the series fit our framework that allows for highly persistent time series
with/without deterministic trends, we adopt the following modified codes: (1′) no transformation;
(2′) yt; (3′) �yt; (4′) log(yt); (5′) log(yt); (6′) �log(yt); (7′) (yt/yt − 1 − 1). For codes (1′) and (4′),
we use the forecasts from the model with no deterministic trend (p = 0), while for the remainder,
we use the forecasts that allow for a deterministic trend (p = 1). In addition to analysing the full
set of time series, we also report results for eight core series as in Stock and Watson (2002a).

The out-of sample results are based on a rolling window scheme with an initial estimation
period 1960:02–1969:12 (119 observations) so that the forecast evaluation period is 1970:01–
2018:12 (588 observations). We compare eight different methods in terms of MSFE: (1) S-GLS:
unconstrained FGLS with lag selection using the Mallows criterion; (2) PA-GLS: partial FGLS
Mallows averaging over the number of lags only; (3) GA-GLS: general FGLS Mallows averaging
over the unit root restriction and the number of lags; (4) PT-GLS: the pretest GLS estimator
based on the Dickey–Fuller GLS t-statistic with lag selection using the MAIC criterion of Ng and
Perron (2001); (5)–(8): S-OLS, PA-OLS, GA-OLS, PT-OLS: the OLS counterparts of methods
(1)–(4). The maximum number of allowable lags in each method is set at K = 12.

Table 1 reports the percentage wins and losses based on MSFE for the 123 series, both pairwise
and overall. In particular, it shows the percentage of the 123 series for which a method listed in a
row outperforms a method listed in a column, as well as all methods (last column).8 The results
clearly illustrate the overall superior performance of the GLS-based methods, which dominate
their OLS versions in about 74% of the series. The GA-GLS estimator delivers the most accurate

7 As of 2018:12, the dataset consisted of 128 raw series, of which five series had at least 30 observations missing
and were dropped from the analysis. These are: (1) VXOCLSx (CBOE S&P 100 Volatility Index); (2) ACOGNOx (Real
Value of Manufacturers’ New Orders Consumer Goods Industries deflated by Core PCE); (3) ANDENOx (Real Value
of Manufacturers’ New Orders for Capital Goods: Nondefense Capital Goods Industries deflated by Core PCE); (4)
UMCSENTx (University of Michigan: Consumer Sentiment); (5) TWEXMMTH (Trade Weighted U.S. Dollar Index:
Major Currencies).

8 The results for a large number of series can be succinctly summarized in this way, as in Boot and Nibbering (2019).
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Figure 4. Forecast accuracy comparison between FGLS and OLS.

forecasts for the majority (about 53%) of the series, consistent with our theoretical and simulation
results. The pairwise comparisons reveal some interesting patterns. First, comparing GA-GLS
with PA-GLS (or GA-OLS with PA-OLS) indicates that accounting for persistence uncertainty
by averaging over the unit root restriction results in considerable forecasting gains compared with
using the unconstrained FGLS estimator. Second, comparing PA-GLS with S-GLS (or PA-OLS
with S-OLS) shows that accounting for lag order uncertainty by averaging over the number of
lags in contrast to lag selection using an information criterion delivers more accurate forecasts
in more than 95% of the series. Third, comparing GA-GLS with GA-OLS (or PA-GLS with PA-
OLS) suggests that trend estimation by FGLS relative to OLS offers a substantial improvement
in forecasting performance. Fourth, in more than 90% of the series, the best forecasting method
involves some kind of averaging, whether over the unit root restriction or the number of lags or
both.

To further understand the performance of the different methods for various types of series,
Figures 4 and 5 plot the MSFE according to the eight groups defined in McCracken and Ng
(2016): (1) output and income; (2) labour market; (3) housing; (4) consumption, orders, and
inventories; (5) money and credits; (6) interest and exchange rates; (7) prices; (8) stock market.
Figure 4 shows that most of the improvements offered by FGLS relative to OLS are concentrated
in groups 2, 4, 6, 7. The top panel of Figure 5 compares GA-GLS with PA-GLS to identify
those groups most sensitive to the unit root restriction. The plot indicates that the advantage of
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Figure 5. Forecast accuracy comparison between alternative methods of FGLS.

the former over the latter is discernible primarily for the series in groups 1, 2, 7, 8. The bottom
panel of Figure 5 compares PA-GLS with S-GLS in an attempt to uncover the types of series
most susceptible to lag order uncertainty. Averaging over the number of lags as opposed to lag
selection is found to be the dominant approach mainly for all series in group 8, 85% of the series
in group 7, and 57% of the series in group 4, with improvements in at least some series in each
of the other groups. Our analysis therefore suggests that addressing both sources of uncertainty
through model averaging can be helpful in generating reliable forecasts.

Finally, we consider the relative predictive ability of the methods with respect to the eight
core series analysed in Stock and Watson (2002a): four real variables (industrial production,
real personal income less transfers, real manufacturing and trade sales, number of employees
on nonagricultural payrolls) and four price indices (the consumer price index, the personal
consumption expenditure implicit price deflator, the consumer price index less food and energy,
the producer price index for finished goods). Table 2 reports the MSFE of the eight methods
relative to that of the OLS estimator using 12 autoregressive lags of the first differences of the
variable. Hence, a number less than one indicates a lower MSFE relative to the OLS benchmark,
and vice versa. The best method for a given series is highlighted in bold. The GA-GLS estimator
turns out to be the best method in seven out of the eight series, the exception being nonagricultural
employment, for which S-GLS dominates the other methods. These results further confirm the
effectiveness of the proposed approach when forecasting U.S. macroeconomic time series.
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Table 2. Relative MSFE of eight core macroeconomic time series.

Industrial Personal Mfg & trade Nonag. CPI Consumption CPI PPI
production income sales employment deflator exc. food

S-GLS 0.962** 0.989 0.981 0.915*** 0.973 0.995 0.976 0.983
PA-GLS 0.961** 0.958* 0.967** 0.919*** 0.958 0.957** 0.958* 0.942**

GA-GLS 0.960** 0.950** 0.963** 0.921*** 0.952* 0.951** 0.955** 0.936**

PT-GLS 0.961** 0.983 0.965** 0.921*** 1.000 0.974* 0.981 0.991
S-OLS 0.981 0.995 0.999 0.946*** 0.979 1.005 0.990 1.009
PA-OLS 0.972** 0.960 0.983 0.954*** 0.964 0.961** 0.961* 0.948**

GA-OLS 0.965** 0.954* 0.968** 0.946*** 0.955* 0.955** 0.957** 0.942**

PT-OLS 0.960** 0.983 0.965** 0.931*** 0.980 0.993 0.985 1.007

Note: *denotes 10%, **denotes 5%, and ***denotes 1% significance level for a two-sided Diebold and Mariano (1995)
test. The benchmark is an unrestricted OLS estimation method with 12 lags.

Two additional sets of empirical results are reported in Online Appendix C. First, we provide
results for multi-step forecasts constructed iteratively from the simple recursion in Step 5 of
Algorithm 1. Second, we present results for both one-step and multi-step forecasts based on
transforming the data to stationarity, as suggested by McCracken and Ng (2016). This set of
results includes forecasts obtained by selecting the number of lags using the AIC. Both sets of
results show that our preferred approach based on FGLS averaging continues to dominate its
competitors, although in the second case, the marginal gains from averaging over the unit root
restriction are smaller, as expected. Further details are provided in Online Appendix C.

7. CONCLUSION

This paper is concerned with developing a new forecast combination approach for highly persistent
univariate autoregressions; it entails a feasible generalized least squares Mallows averaging
estimator that combines the unrestricted and restricted estimators. Our contributions are three-
fold. First, we derived analytical results for the in-sample AMSE and MSFE of the proposed
estimator and showed that the optimal averaging weights are different from the OLS weights
studied in Hansen (2010). Second, our analysis fills a gap in the literature in terms of providing
a theoretical basis for the generalized Mallows averaging estimator by modelling the coefficients
of the short-run dynamics as local to zero. Third, our simulation and empirical results indicate
that the proposed approach yields considerable improvement over existing univariate methods
in terms of finite-sample forecast risk, which should be appealing to practitioners. The new
procedure can also potentially serve as a useful univariate benchmark for evaluating forecasts
based on exploiting information in large datasets (e.g., the diffusion index methodology of Stock
and Watson, 2002a, b).

At least two possible extensions of our paper are worth noting. First, our analysis assumes
homoskedastic innovations, so an interesting extension would be to the heteroskedastic case,
which could potentially be achieved by adapting the jackknife method of Hansen and Racine
(2012) to the present context. Second, our framework does not allow for the possibility of
structural breaks, an important source of misspecification in practice. Hansen (2009) developed
a Mallows averaging estimator that averages over the no-break and break estimators within an
asymptotic framework that models the break magnitude as local to zero, but did not address the
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issue of persistence or lag uncertainty. A general, unified framework that addresses structural
break uncertainty in addition to persistence and lag uncertainty appears highly desirable from
a practical standpoint. Such an analysis is likely to be complicated by the multiplicity of local
parameters arising from the different sources of uncertainty that cannot be consistently estimated.
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APPENDIX A: PROOFS OF RESULTS

Let W(.) denote a standard Brownian motion on [0,1] and define the diffusion process: dJc(r) = cJc(r)
+ dW(r). Define the demeaned and detrended versions of Jc(.) as follows: J̄c(r) = Jc(r) − ∫ 1

0 Jc(s)ds,

J̃c(r) = Jc(r) − (4 − 6r)
∫ 1

0 Jc(s)ds − (12r − 6)
∫ 1

0 sJc(s)ds. Let β = (β0, β1)
′
, zt = (1, t)

′
. For brevity, all

proofs are provided only for the case p = 1. The proofs for p = 0 follow analogous arguments. We first
state two lemmas that will be useful in developing the proofs of the results.

LEMMA A.1 Let˙and¨denote the first-stage and the second-stage estimates of parameters in the unrestricted
FGLS procedure. Under Assumptions 2.1 and 2.2, as T → ∞, we have

(a) T (α̇ − α)
d→

⎧⎪⎨⎪⎩
a

∫ 1
0 J̃cdW (r)∫ 1

0 J̃c
2
dr

for p = 1

a
∫ 1

0 J̄cdW (r)∫ 1
0 J̄c

2
dr

for p = 0

(b)

⎧⎨⎩ T
1
2

σ
(β̈1 − β1)

d→ a−1γ1 for p = 1
T

− 1
2

σ
(β̈0 − β0)

d→ 0 for p = 0, 1
where γ1 = (1 − aċ + 1

3 (aċ)2)−1
∫ 1

0 (1 − aċs)dẆ (s),

dẆ (s) = dW (s) − (aċ − c)Jc(s)ds.

(c) T
− 1

2

σ
û[T r]

d→
{

a−1P (r) for p = 1
a−1Jc(r) for p = 0

where P(r) = Jc(r) − γ 1r.

(d) T (α̈ − α)
d→

⎧⎪⎨⎪⎩
a

∫ 1
0 P (r)dW (r)+γ1

∫ 1
0 (cr−1)P (r)dr∫ 1

0 P (r)2dr
for p = 1

a
∫ 1

0 JcdW (r)∫ 1
0 J 2

c dr
for p = 0

(e) T
1
2

σ
(α̈1 − α1, · · · , α̈k − αk)

′ d→ R ∼ N (0, Q−1). Q = E(LtL
′
t ). Lt = (�ut−1, · · · ,�ut−k)

′
.

LEMMA A.2 Under Assumptions 2.1 and 2.2, as c → −∞, we have
(a) limc→−∞ E[

∫ 1
0 crJc(r)dr]2 = 1

3

(b) limc→−∞ E[
∫ 1

0 crJc(r)dr
∫ 1

0 rdW (r)] = − 1
3

(c) limc→−∞ E[γ 2
1

∫ 1
0 (cr − 1)2dr] = 1

(d) limc→−∞ E[(c̈ − c)2
∫ 1

0 P (r)2dr] = 1

(e) limc→−∞ E[γ1(c̈ − c)
∫ 1

0 (cr − 1)P (r)dr] = 0.

Proof of Lemma A.1: (a) From Lemma 1 of Hansen (1995), we have u[T r]

σ
√

T

d→ a−1Jc(r). Denoting ỹt as

the residual from regressing yt on zt, it follows that ỹ[T r]

σ
√

T

d→ a−1J̃c(r). By the Frisch–Waugh–Lovell theorem
and the independence of the estimates between the nonstationary and stationary components, we have

T (α̇ − α) =
∑T

t=1 ỹt et /T∑T

t=1 ỹ2
t−1/T 2

+ op(1)
d→ σ 2a−1

∫ 1
0 J̃cdW (r)

σ 2a−2
∫ 1

0 J̃ 2
c dr

= a

∫ 1
0 J̃cdW (r)∫ 1

0 J̃c
2
dr

. (A.1)

(b) Denote the quasi-differenced error v̂t = ut − α̇ut−1; we have v̂t = ut − α̇ut−1 = (ut − αut−1) − (α̇ −
α)ut−1. We first derive the limit of 1

σ
√

T

∑[rT ]
t=1 v̂t . Denoting g(L) = α1L + ... + αkLk, we have

ut − αut−1 = g(L)(ut − ut−1) + et = g(L)(ut − αut−1 + αut−1 − ut−1) + et

= (1 − g(L))−1g(L)(α − 1)ut−1 + (1 − g(L))−1et .
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By the Beveridge–Nelson decomposition,

1
σ
√

T

∑[rT ]
t=1 v̂t = 1

σ
√

T

∑[rT ]
t=1 [ut − αut−1 − (α̇ − α)ut−1]

= 1
σ
√

T
{(1 − g(1))−1g(1)(α − 1)

∑[rT ]
t=1 ut−1 + (1 − g(1))−1

∑[rT ]
t=1 et − (α̇ − α)

∑[rT ]
t=1 ut−1} + op(1)

d→ a−1 × (1 − a) × ac × a−1
∫ r

0 Jc(s)ds + a−1W (r) − (ċ − c)
∫ r

0 Jc(s)ds

= a−1[W (r) − (aċ − c)
∫ r

0 Jc(s)ds] := a−1Ẇ (r). (A.2)

From Theorem 5(b) in Canjels and Watson (1997),

√
T

σ
(β̈1 − β1) =

T −1/2
∑T

t=1 v̂t (1 − aċ
t

T
)

σ (1 − ac̈ + 1

3
(aċ)2)

+ op(1)

d→ (1 − aċ + 1

3
(aċ)2)−1

∫ 1

0
(1 − aċs)dẆ (s) := a−1γ1, (A.3)

where γ1 = (1 − aċ + 1
3 (aċ)2)−1

∫ 1
0 (1 − aċs)dẆ (s), dẆ (s) = dW (s) − (aċ − c)Jc(s)ds. The second re-

sult in (b) can be shown by a simple algebraic exercise using results from Canjels and Watson (1997) and
is hence omitted.

(c) We have

1

σ
√

T
û[rT ] = 1

σ
√

T
(y[rT ] − β̈0 − β̈1[rT ])

= 1

σ
√

T
u[rT ] − 1

σ
√

T
(β̈0 − β0) −

√
T

σ
(β̈1 − β1)

[rT ]

T

d→ a−1Jc(r) − 0 − a−1γ1r = a−1(Jc(r) − γ1r) := a−1P (r). (A.4)

(d) Note that ût = ut − (β̈0 − β0) − (β̈1 − β1)t , �ût = �ut − (β̈1 − β1). Defining β̈ = (β̈0, β̈1)′, the
effective error is

ξt = et − (ut − ût ) + α(ut−1 − ût−1) + α1(�ut−1 − �ût−1) + · · · + αk(�ut−k − �ût−k)

= et − z′
t (β̈ − β) + (1 + ac

T
)z′

t−1(β̈ − β) + α1(β̈1 − β1) + · · · + αk(β̈1 − β1)

= et + ac

T
(β̈0 − β0) + ( t−1

T
c − 1)a(β̈1 − β1), (A.5)

which gives

T (α̈ − α) =
∑T

t=1 ût ξt /T∑T

t=1 û2
t−1/T 2

+ op(1)

=
∑T

t=1 ût et /T + ∑T

t=1 ût
ac

T
(β̈0 − β0)/T + ∑T

t=1 ût ( t−1
T

c − 1)a(β̈1 − β1)/T∑T

t=1 û2
t−1/T 2

d→ σ 2a−1
∫ 1

0 P (r)dW (r) + 0 + σ 2a−1γ1

∫ 1
0 (cr − 1)P (r)dr

σ 2a−2
∫ 1

0 P (r)2dr

= a

∫ 1
0 P (r)dW (r) + γ1

∫ 1
0 (cr − 1)P (r)dr∫ 1

0 P (r)2dr
, (A.6)

thereby proving (d).
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(e) From (d), �ût = �ut + Op(T −1/2) so that L̂t = Lt + Op(T −1/2). Recalling the independence of the
estimates between the nonstationary and stationary components, we have

T
1
2

σ
(α̈1 − α1, · · · , α̈k − αk)

′ = (
1

T

T∑
t=1

L̂t L̂
′
t )

−1(
1

σ
√

T

T∑
t=1

L̂t et ) + op(1)

= (
1

T

T∑
t=1

LtL
′
t )

−1(
1

σ
√

T

T∑
t=1

Ltet ) + op(1)

d→ R ∼ N (0,Q−1), (A.7)

where Q = E(LtL
′
t ). �

Proof of Lemma A.2: (a) We have Jc(r) = ∫ r

0 ec(r−s)dW (s). It follows that

lim
c→−∞

E[
∫ 1

0
crJc(r)dr]2 = lim

c→−∞
E[

∫ 1

0
cr

∫ r

0
ec(r−s)dW (s)dr]2

= lim
c→−∞

E[
∫ 1

0

∫ 1

s

crec(r−s)drdW (s)]2 = lim
c→−∞

E[
∫ 1

0
((1 − 1

c
)ec(1−s) − s + 1

c
)dW (s)]2

= lim
c→−∞

[(1 − 1

c
)2 e2c − 1

2c
+ 1

3
+ 1

c2
+ 2(1 − 1

c
)
1

c
− 1

c
] = 1

3
. (A.8)

(b) Similar to (a), we have

lim
c→−∞

E[
∫ 1

0
crJc(r)dr

∫ 1

0
rdW (r)] = lim

c→−∞
E[

∫ 1

0
cr

∫ r

0
ec(r−s)dW (s)dr

∫ 1

0
rdW (r)]

= lim
c→−∞

E[
∫ 1

0
((1 − 1

c
)ec(1−s) − s + 1

c
)dW (s)

∫ 1

0
rdW (r)] = lim

c→−∞

∫ 1

0
((1 − 1

c
)ec(1−s) − s + 1

c
)sds

= lim
c→−∞

[(1 − 1

c
)
1

c
(1 − ec − 1

c
) − 1

3
− 1

2c
] = −1

3
. (A.9)

(c) From lemma A.1 (a) we know that ċ − c =
∫ 1

0 J̃cdW (r)∫ 1
0 J̃c

2
dr

. As c → −∞, Phillips (1987) shows(∫ 1
0 Jc

2
)−1 ∫ 1

0 JcdW (r) = Op(|c|1/2). Using the techniques of Phillips (2014), we can easily verify that

this result also applies for the trend case, i.e., ċ − c =
(∫ 1

0 J̃ 2
c

)−1 ∫ 1
0 J̃cdW (r) = Op(|c|1/2), which implies

that ċ/c = 1 + Op(|c|−1/2). Then it follows that

limc→−∞ E[γ 2
1

∫ 1
0 (cr − 1)2dr] = limc→−∞( 1

3 c2 − c + 1)E[(1 − aċ + 1
3 (aċ)2)−1

∫ 1
0 (1 − aċs)dẆ (s)]2

= limc→−∞( 1
3 c2 − c + 1)E[(1 − aċ + 1

3 (aċ)2)−1
∫ 1

0 (1 − aċs)dW (s) − ∫ 1
0 (1 − aċs)(aċ − c)Jc(s)ds]2

= limc→−∞ 1
3 c232c−4E[a2c2(

∫ 1
0 sdW (s) + ∫ 1

0 (1 − a)cJc(s)ds)]2 + O(|c|−1/2)

= limc→−∞ 3a−2E[(
∫ 1

0 sdW (s) + ∫ 1
0 (1 − a)cJc(s)ds)]2. (A.10)

With results (a) and (b) in hand, we have

limc→−∞ 3a−2E[(
∫ 1

0 sdW (s) + ∫ 1
0 (1 − a)cJc(s)ds)]2

= limc→−∞ 3a−2E[(
∫ 1

0 sdW (s))2 + (
∫ 1

0 (1 − a)cJc(s)ds)2 + 2
∫ 1

0 sdW (s)
∫ 1

0 (1 − a)cJc(s)ds]2

= 3a−2[ 1
3 + 1

3 (1 − a)2 − 2(1 − a) 1
3 ] = 1. (A.11)
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(d) From the proof of Lemma A.2 (c), we know that γ 1 = Op(|c|−1). Phillips (2014) shows that as c →
−∞,

∫ 1
0 Jc(r)dr = Op(|c|−1),

∫ 1
0 rJc(r)dr = Op(|c|−1),

∫ 1
0 Jc(r)dW (r) = Op(|c|−1/2). Recalling that P(r)

= Jc(r) − γ 1r, it is easy to show that
∫ 1

0 P (r)dW (r) = Op(|c|−1/2),
∫ 1

0 (cr − 1)P (r)dr = Op(1). Then it

follows that γ1

∫ 1
0 (cr − 1)P (r)dr = Op(|c|−1), which is of smaller order than

∫ 1
0 P (r)dW (r). From Phillips

(1987), as c → −∞, (−2c)
∫ 1

0 Jc(r)2dr
p→ 1, (−2c)−1/2

∫ 1
0 Jc(r)dW (r)

d→ N (0, 1). It is easy to show that

the two limits hold when Jc(r) is replaced with P(r). Thus,
(∫ 1

0 P (r)2dr
)−1/2 ∫ 1

0 P (r)dW (r)
d→ N (0, 1) as

c → −∞. Then we have

lim
c→−∞

E[((c̈ − c)2

∫ 1

0
P (r)2dr] = lim

c→−∞

[
E

(
∫ 1

0 P (r)dW (r) + γ1

∫ 1
0 (cr − 1)P (r)dr)2

(
∫ 1

0 P (r)2dr)2

∫ 1

0
P (r)2dr

]

= lim
c→−∞

E[

∫ 1
0 P (r)dW (r)

(
∫ 1

0 P (r)2dr)1/2
]2 + o(1) = 1. (A.12)

(e) Using the results stated in the foregoing parts, it follows that limc→−∞ E[γ1(c̈ − c)
∫ 1

0 (cr − 1)P (r)dr] =
limc→−∞ E[Op(|c|−1)Op(|c|1/2)Op(1)] = limc→−∞ O(|c|−1/2) = 0. �

Proof of Theorem 2.1 (a) The forecast error can be expressed as

T

1

2

σ
ê[rT ] = T

1

2

σ
(μ̂[rT ] − μ[rT ])

= ac

σ
T −1/2(̂u[rT ] − u[rT ]) + T 1/2

σ
(β̈1 − β1) + T

σ
(α̈ − α)T −1/2û[rT ]

+
k∑

i=1

T 1/2

σ
αi(�û[rT ]−i − �u[rT ]−i) +

k∑
i=1

T 1/2

σ
(α̈i − αi)�û[rT ]−i

= ac

σ
T −1/2(̂u[rT ] − u[rT ]) + a

T 1/2

σ
(β̈1 − β1) + T

σ
(α̈ − α)T −1/2û[rT ]

+
k∑

i=1

T 1/2

σ
(α̈i − αi)�û[rT ]−i

= A[rT ] + B[rT ] (A.13)

since �û[rT ]−i − �u[rT ]−i = β1 − β̈1. We have

A[rT ] = ac

σ
T −1/2(̂u[rT ] − u[rT ]) + a

T 1/2

σ
(β̈1 − β1) + T

σ
(α̈ − α)T −1/2û[rT ]

d→ ac(a−1P (r) − a−1Jc(r)) + aa−1γ1 + a(c̈ − c)a−1P (r)

= c(P (r) − Jc(r)) + γ1 + (c̈ − c)P (r)

= γ1(1 − cr) + (c̈ − c)P (r)
�= U1(c, a, r)

B[rT ] =
k∑

i=1

T 1/2

σ
(α̈i − αi)�û[rT ]−i = −R

′
L̂[rT ]. (A.14)
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It follows that

lim
T →∞

1

T

T∑
t=1

A2
t =

∫ 1

0
U1(c, a, r)2dr

lim
T →∞

1

T

T∑
t=1

B2
t = lim

T →∞
R

′
(

1

T

T∑
t=1

L̂t L̂
′
t )R → R

′
QR ∼ χ 2

k

lim
T →∞

1

T

T∑
t=1

AtBt = 0. (A.15)

For in-sample AMSE:

m1(c, a, 1, k) = lim
T →∞

1

σ 2
E

T∑
t=1

(μ̂t − μt )
2

= lim
T →∞

E
1

T

T∑
t=1

(A2
t + B2

t + 2AtBt )

= E

[∫ 1

0
U1(c, a, r)2dr

]
+ k. (A.16)

(b) As c → −∞,

limc→−∞ E
[∫ 1

0 U1(c, a, r)2dr
]

= limc→−∞ E
[∫ 1

0 {γ1(1 − cr) + (c̈ − c)P (r)}2 dr
]

= limc→−∞ E[γ 2
1

∫ 1
0 (cr − 1)2dr] + E[(c̈ − c)2

∫ 1
0 P (r)2dr] + 2E[γ1(c̈ − c)

∫ 1
0 (cr − 1)P (r)dr]

= 1 + 1 + 2 · 0 = 2 [By Lemma A.2]. (A.17)

Then, as c → −∞, (A.16) equals 2 + k.
(c) For MSFE:

f1(c, a, 1, k) = lim
T →∞

T

σ 2
E(μ̂T +1 − μT +1)2

= lim
T →∞

E(A2
T +1 + B2

T +1 + 2AT +1BT +1)

= E[U1(c, a, 1)2] + E(R
′
(L̂T +1L̂

′
T +1)R) + 0

= E[U1(c, a, 1)2] + k (A.18)

since E(R
′
(L̂T +1L̂

′
T +1)R) = tr

[
E(L̂T +1L̂

′
T +1RR

′
)
] = E(R

′
QR) = k. � �

Proof of Corollary 2.1 (a) First, note that the expression for V1(c, r) is derived from Hansen (2010) by
transforming vector stochastic integrals to explicit Brownian motion processes. Following Lemma A.1 and
Theorem 2.1, we have the restricted FGLS estimator as V

gls

1 (c, r) = Jc(1) − cJc(r), the same as Hansen’s
(2010) restricted OLS estimator (note that Jc(1) = c

∫ 1
0 Jc(r)dr + W (1)). So we simply drop the superscript

gls to simplify the notation. Using the definition of V1(c, r), we have m0(c, 1) = E[
∫ 1

0 V1(c, r)2dr] +

C© 2021 Royal Economic Society.
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k, f0(c, 1) = E[V1(c, 1)2] + k. For the averaging estimator, it follows that

mw(c, a, 1, k)

= lim
T →∞

1

σ 2

T∑
t=1

E(μ̂t (w) − μt )
2

= lim
T →∞

1

σ 2

T∑
t=1

E(wμ̂t + (1 − w)μ̃t − μt )
2

= lim
T →∞

1

σ 2

[
w2E

{
T∑

t=1

(μ̂t − μt )
2

}

+(1 − w)2E

{
T∑

t=1

(μ̃t − μt )
2

}
+ 2w(1 − w)E

{
T∑

t=1

(μ̂t − μt )(μ̃t − μt )

}]

= w2

[
E

∫ 1

0
U1(c, a, r)2dr + k

]
+ (1 − w)2

[
E

∫ 1

0
V1(c, r)2dr + k

]

+2w(1 − w)

[
E

∫ 1

0
U1(c, a, r)V1(c, r)dr + k

]
= w2m1(c, a, 1) + (1 − w)2m0(c, 1) + 2w(1 − w)m01(c, a, 1) + k.

(b) The MSFE fw(c, a, 1, k) of the averaging estimator can be derived in a manner similar to that in (a).
The derivation is omitted.

(c) We have

lim
c→0

m01(c, a, 1) = lim
c→0

E

∫ 1

0
U1(c, a, r)V1(c, r)dr

= lim
c→0

E

∫ 1

0
[γ1(1 − cr) + (c̈ − c)P (r)][W (1) − cJ̄c(r)]dr

= lim
c→0

E[γ1W (1)] + lim
c→0

E

[
(c̈

∫ 1

0
P (r)dr)W (1)

]
= 1 + 0 = 1. (A.19)

The first term in (A.19) is E[E{γ1W (1)|J̃0(.)}] = E[(1 − aċ + 1
3 (aċ)2)−1{(1 − aċ)E[W (1)2|J̃0(.)] +

(aċ)2/3}] = 1 since E[W (1)|J̃0(.)] = 0. That the second term is zero follows from the facts that
c̈ = [2

∫ 1
0 P (r)2dr]−1[P (1)2 − 1], E[P (r)W (1)] = 0, r ∈ [0, 1] and the law of iterated expectations. ��

Proof of Corollary 2.2 The proof is straightforward following the proof of Corollary 2.1 and is hence
omitted. �

Proof of Theorem 3.1 We have

limT →∞ E
M0(c, a, 1, k) − T σ 2

σ 2

= limT →∞ E[
1

σ 2

T∑
t=1

(e2
t − σ 2) + 1

σ 2

T∑
t=1

(μ̃t − μt )
2 + 2σ̂ 2

σ 2
(m01(c, a, 1) + k) − 2

σ 2

T∑
t=1

et (μ̃t − μt )]

= 0 + m0(c, 1) + k + 2(m01(c, a, 1) + k) − limT →∞ E
2

σ 2

T∑
t=1

et (μ̃t − μt ). (A.20)

C© 2021 Royal Economic Society.



Generalized forecast averaging a7

The last term is –2 times

lim
T →∞

E
1

σ 2

T∑
t=1

et (μ̃t − μt ) = E

∫ 1

0
[−cJ̄c(r) + W (1)]dW (r) + Eχ 2

k . (A.21)

As c → 0, we have E
∫ 1

0 [−cJ̄c(r) + W (1)]dW (r) → EW (1)2 = 1, so the last term amounts to –2 times
limc→0[m01(c, a, 1) + k] so that the limit of (A.20) is limc → 0[m0(c, 1) + k].

For the unrestricted case,

limT →∞ E
M1(c, a, 1, k) − T σ 2

σ 2

= limT →∞ E[
1

σ 2

T∑
t=1

(e2
t − σ 2) + 1

σ 2

T∑
t=1

(μ̂t − μt )
2 + 2σ̂ 2

σ 2
(m1(c, a, 1) + k) − 2

σ 2

T∑
t=1

et (μ̂t − μt )]

= 0 + m1(c, a, 1) + k + 2(m1(c, a, 1) + k) − limT →∞ E
2

σ 2

T∑
t=1

et (μ̂t − μt ). (A.22)

The last term is –2 times

lim
T →∞

E
1

σ 2

T∑
t=1

et (μ̂t − μt ) = E

∫ 1

0
[γ1(1 − cr) + (c̈ − c)P (r)]dW (r) + Eχ 2

k . (A.23)

Using Lemma A.2, we have

lim
c→−∞

E

∫ 1

0
γ1(1 − cr)dW (r) = lim

c→−∞
E[(1 − aċ

+1

3
(aċ)2)−1

∫ 1

0
(1 − aċs)dẆ (s)

∫ 1

0
(1 − cr)dW (r)]

= lim
c→−∞

E[(1 − aċ + 1

3
(aċ)2)−1(

∫ 1

0
(1 − aċs)dW (s)

∫ 1

0
(1 − cr)dW (r)

+
∫ 1

0
(1 − aċs)(c − aċ)ds

∫ 1

0
(1 − cr)dW (r))] = 3a−2(

1

3
a − 1

3
a(1 − a)) = 1 (A.24)

limc→−∞ E
∫ 1

0 (c̈ − c)P (r)dW (r) = limc→−∞ E[
(
∫ 1

0 P (r)dW (r))2∫ 1
0 P (r)2dr

+ op(1)] = 1. (A.25)

Substituting (A.24) and (A.25) in (A.23) establishes that the limit of (A.22) equals limc → −∞[m1(c, a, 1) +
k]. � �
Proof of Theorem 4.1 To prove this result, we need to derive the explicit forms of mols

1K and mols
0K . We first con-

sider the case where l ≤ k. Let Ht = (�yt−1, ...,�yt−K )
′
, and for i ≤ j, H[i,j ],t = (�yt−i , ...,�yt−j )

′
, α[i,j ] =

(αi, ..., αj )
′
. Let xt = (t, yt − 1)

′
. Define the orthogonalized series H ∗

t [x∗
t ] as the residuals from regressing

Ht[xt] on a constant. Let

 = E(H ∗
t H ∗′

t ) =
[

11[l×l] 12[l×(K−l)]

21[(K−l)×K] 22[(K−l)×(K−l)]

]
[K×K]

.

For unrestricted estimation, we reformulate the regression as

�yt = θ0 + x∗′
t θ1 + H ∗′

[1,l],tα[1,l] + ε∗
t , (A.26)

where the effective error is ε∗
t = H ∗′

[l+1,k],tα[l+1,k] + et , with H ∗
[i,j ],t defined analogously to H[i, j], t. θ 0 and θ 1

are functions of the true parameters; specifically, θ1 = (−β1(α − 1), α − 1)
′
. From this regression, it follows

that

C© 2021 Royal Economic Society.
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T 1/2(ᾰ[1,l] − α[1,l]) = (
1

T

T∑
t=1

H ∗
[1,l],tH

∗′
[1,l],t )

−1(
1√
T

T∑
t=1

H ∗
[1,l],t ε

∗
t ) + op(1)

= (
1

T

T∑
t=1

H ∗
[1,l],tH

∗′
[1,l],t )

−1(
1√
T

T∑
t=1

H ∗
[1,l],t et )

+(
1

T

T∑
t=1

H ∗
[1,l],tH

∗′
[1,l],t )

−1(
1√
T

T∑
t=1

H ∗
[1,l],tH

∗′
[l+1,k],tα[l+1,k]) + op(1)

d→ N (0, σ 2−1
11 ) + −1

11 12α[l+1,K] (A.27)

with α[l+1,K] = (αl+1, ..., αk, αk+1, ..., αK )
′
, where (αk+1, ..., αK )

′ = (0, ..., 0)
′
. We can write

μ̆t (l) − μt = (θ̆0 − θ0) + x∗′
t (θ̆1 − θ1) + H ∗′

[1,l],t (ᾰ[1,l] − α[1,l]) − H ∗′
[l+1,k],tα[l+1,k]. (A.28)

We now calculate the cross product of the misspecified unrestricted estimator with the estimator from the
largest unrestricted model. Denoting θ̆K

0 , θ̆K
1 , ᾰK

[1,l], and ᾰK
[l+1,K] as the estimates from the largest model, we

have:

μ̆t (K) − μt = (θ̆K
0 − θ0) + x∗′

t (θ̆K
1 − θ1) + H ∗′

[1,l],t (ᾰ
K
[1,l] − α[1,l])

+H ∗′
[l+1,K],t (ᾰ

K
[l+1,K] − α[l+1,K]). (A.29)

Here,
√

T (ᾰK
[1,K] − α[1,K]) = √

T (ᾰK ′
[1,l] − α

′
[1,l], ᾰ

K ′
[l+1,K] − α

′
[l+1,K])

′ d→ N (0, σ 2−1). Let H ∗
[1,l] =

(H ∗
[1,l],l+2, ..., H

∗
[1,l],T )

′
, H ∗ = (H ∗

l+2, ..., H
∗
T )

′
. For mols

1K (c, δ, 1, l), we calculate

mols
1K (c, δ, 1, l) = E[ lim

T →∞
1

σ 2

T∑
t=1

(μ̆t (l) − μt )(μ̆t (K) − μt )]

= E[ lim
T →∞

T

σ 2
(θ̆0 − θ0)

′
(θ̆K

0 − θ0) + 1

σ 2
(θ̆1 − θ1)

′
T∑

t=1

x∗
t x

∗′
t (θ̆K

1 − θ1)

+ 1

σ 2
(ᾰ[1,l] − α[1,l])

′
T∑

t=1

H ∗
[1,l],tH

∗′
[1,l],t (ᾰ

K
[1,l] − α[1,l])

+ 1

σ 2
(ᾰ[1,l] − α[1,l])

′
T∑

t=1

H ∗
[1,l],tH

∗′
[l+1,K],t (ᾰ

K
[l+1,K] − α[l+1,K])

− 1

σ 2
α

′
[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
[1,l],t (ᾰ

K
[1,l] − α[1,l])

− 1

σ 2
α

′
[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
[l+1,K],t (ᾰ

K
[l+1,K] − α[l+1,K]) + op(1)]

C© 2021 Royal Economic Society.
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= 1 + E(F1c) + E lim
T →∞

[
1

σ 2
(ᾰ[1,l] − α[1,l])

′
T∑

t=1

H ∗
[1,l],tH

∗′
t (ᾰK

[1,K] − α[1,K])

− 1

σ 2
α

′
[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
t (ᾰK

[1,K] − α[1,K])]

= E(F1c) + 1 + lim
T →∞

tr(H ∗
[1,l](H

∗′
[1,l]H

∗
[1,l])

−1H ∗′
[1,l]H

∗(H ∗′
H ∗)−1H ∗′

) + 0

= E(F1c) + 1 + l, (A.30)

where F1c = limT →∞ 1
σ 2 (θ̆1 − θ1)

′ ∑T

t=1 x∗
t x

∗′
t (θ̆K

1 − θ1) = Op(1) with E(F1c)
p→ 2, as c → −∞ (see equa-

tions (15) and (36) in Hansen 2010). The last two equalities in (A.30) hold since

E lim
T →∞

[
1

σ 2
(ᾰ[1,l] − α[1,l])

′
T∑

t=1

H ∗
[1,l],tH

∗′
t (ᾰK

[1,K] − α[1,K])

− 1

σ 2
α

′
[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
t (ᾰK

[1,K] − α[1,K])

]

= E[ lim
T →∞

1

σ 2
(

T∑
t=1

H ∗
[1,l],t et )

′
(

T∑
t=1

H ∗
[1,l],tH

∗′
[1,l],t )

−1
T∑

t=1

H ∗
[1,l],tH

∗′
t (

T∑
t=1

H ∗
t H ∗′

t )−1
T∑

t=1

H ∗
t et

+ lim
T →∞

1

σ 2
(

T∑
t=1

H ∗
[1,l],tH

∗′
[l+1,k],tα[l+1,k])

′
(

T∑
t=1

H ∗
[1,l],tH

∗′
[1,l],t )

−1

T∑
t=1

H ∗
[1,l],tH

∗′
t (

T∑
t=1

H ∗
t H ∗′

t )−1
T∑

t=1

H ∗
t et

− lim
T →∞

1

σ 2
α[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
t (

T∑
t=1

H ∗
t H ∗′

t )−1
T∑

t=1

H ∗
t et + op(1)]

= lim
T →∞

tr(H ∗
[1,l](H

∗′
[1,l]H

∗
[1,l])

−1H ∗′
[1,l]H

∗(H ∗′
H ∗)−1H ∗′

) + 0 − 0

= l (A.31)

using the properties of a projection matrix. Hence (A.30) reduces to 2 + 1 + l as c → −∞.
For the restricted model, we can write

μ̃t (l) − μt = (θ̃0 − θ0) + H ∗′
[1,l],t (α̃[1,l] − α[1,l]) − H ∗′

[l+1,k],tα[l+1,k] − ac

T
y∗

t−1. (A.32)

C© 2021 Royal Economic Society.
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Then we calculate

mols
0K (c, δ, 1, l) = E lim

T →∞
1

σ 2

T∑
t=1

(μ̃t (l) − μt )(μ̆t (K) − μt )

= E lim
T →∞

[
T

σ 2
(θ̃0 − θ0)

′
(θ̆K

0 − θ0) − ac

T σ 2

T∑
t=1

y∗
t−1x

∗′
t (θ̆K

1 − θ1)

+ 1

σ 2
(α̃[1,l] − α[1,l])

′
T∑

t=1

H ∗
[1,l],tH

∗′
[1,l],t (α̃

K
[1,l] − α[1,l])

+ 1

σ 2
(α̃[1,l] − α[1,l])

′
T∑

t=1

H ∗
[1,l],tH

∗′
[l+1,K],t (α̃

K
[1+1,K] − α[l+1,K])

− 1

σ 2
α

′
[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
[1,l],t (α̃

K
[1,l] − α[1,l])

− 1

σ 2
α

′
[l+1,k]

T∑
t=1

H ∗
[l+1,k],tH

∗′
[l+1,K],t (α̃

K
[l+1,K] − α[l+1,K]) + op(1)]

= E(F01c) + 1 + l, (A.33)

where F01c = limT →∞ − ac

T σ 2

∑T

t=1 y∗
t−1x

∗′
t (θ̆K

1 − θ1) = Op(1). It follows that F01c

p→ 0 as c → 0. So (A.33)
reduces to 1 + l as c → 0.

We next consider the case where l > k, and show that the results for mols
1K and mols

0K remain the same. For
unrestricted estimation, similar to (A.26), we reformulate the regression as

�yt = θ0 + x∗′
t θ1 + H ∗′

[1,l],tα[1,l] + ε∗
t . (A.34)

The effective error is ε∗
t = −H ∗′

[k+1,l],tα[k+1,l] + et , where α[1,l] = (α1, ..., , αk, ...αl)
′

are the parameters
corresponding to the selected lags, and α[k+1,l] = (αk+1, ..., αl)

′
are the parameters corresponding to the

over-specified lags. Note that the true parameters α[k+1,l] = (αk+1, ..., αl)
′ = (0, ..., 0)

′
. In this regression,

it follows that T 1/2(ᾰ[1,l] − α[1,l]) → N (0, σ 2−1
11 ), which is different from (A.27). Nevertheless, the sub-

sequent calculations are exactly the same as in (A.30−A.31), so the result remains the same. The same
conclusion applies to the restricted counterpart.

Now we prove the unbiasedness property. We elaborate on the steps to prove the result for the case l ≤
k, with similar steps applicable to the case l > k with the same conclusion. Firstly, for the restricted case,

E lim
T →∞

Mols
0 (c, δ, 1, l) − T σ 2

σ 2

= E lim
T →∞

[ 1

σ 2

T∑
t=1

(e2
t − σ 2) + 1

σ 2

T∑
t=1

(μ̃t (l) − μt )
2

+2σ̆ 2
K

σ 2
(mols

0K (c, δ, 1, l)) − 2

σ 2

T∑
t=1

et (μ̃t (l) − μt )
]

= 0 + mols
0 (c, δ, 1, l) + 2mols

0K (c, δ, 1, l) − E lim
T →∞

2

σ 2

T∑
t=1

et (μ̃t (l) − μt ). (A.35)
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The last term is –2 times

E limT →∞
1

σ 2

T∑
t=1

et (μ̃t (l) − μt )

= E limT →∞[
1

σ 2

T∑
t=1

et (θ̃0 − θ0) − ac

T σ 2

T∑
t=1

ety
∗
t−1

+ 1

σ 2

T∑
t=1

etH
∗′
[1,l],t (α̃[1,l] − α[1,l]) − 1

σ 2

T∑
t=1

etH
∗′
[l+1,k],tα[l+1,k]]

= 1 + E(F01c) + E limT →∞
1

σ 2
[

T∑
t=1

etH
∗′
[1,l],t (

1

T

T∑
t=1

H ∗
[1,l],tH

∗′
[1,l],t )

−1(
1

T
H ∗

[1,l],t et )] + 0

= 1 + E(F01c) + l (A.36)

which is mols
0K (c, δ, 1, l). Note that here we have − ac

T σ 2

∑T

t=1 ety
∗
t−1

d→ F01c. To show that − ac

T σ 2

∑T

t=1 ety
∗
t−1

and − ac

T σ 2

∑T

t=1 y∗
t−1x

∗′
t (θ̆K

1 − θ1) follow the same limit F01c, notice that y∗
t−1 = Sx∗

t , where S = [0, 1]. We
have

limT →∞ − ac

T σ 2

T∑
t=1

y∗
t−1x

∗′
t (θ̆K

1 − θ1) − (− ac

T σ 2

T∑
t=1

ety
∗
t−1)

= limT →∞
ac

T σ 2
[

T∑
t=1

Sx∗
t x

∗′
t

T∑
t=1

(x∗
t x

∗′
t )−1

T∑
t=1

x∗
t et −

T∑
t=1

Sx∗
t et ]

= limT →∞
ac

T σ 2
[S

T∑
t=1

x∗
t et − S

T∑
t=1

x∗
t et ] = 0. (A.37)

Then, adding the terms in (A.35) yields the final result mols
0 (c, δ, 1, l).

For the unrestricted case,

E lim
T →∞

Mols
1 (c, δ, 1, l) − T σ 2

σ 2

= E lim
T →∞

[
1

σ 2

T∑
t=1

(e2
t − σ 2) + 1

σ 2

T∑
t=1

(μ̆t (l) − μt )
2

+2σ̆ 2
K

σ 2
(mols

1K (c, δ, 1, l)) − 2

σ 2

T∑
t=1

et (μ̆t (l) − μt )]

= 0 + mols
1 (c, δ, 1, l) + 2mols

1K (c, δ, 1, l) − E lim
T →∞

2

σ 2

T∑
t=1

et (μ̆t (l) − μt ). (A.38)
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The last term is –2 times

E limT →∞
1

σ 2

T∑
t=1

et (μ̆t (l) − μt )

= E limT →∞[
1

σ 2

T∑
t=1

et (θ̆0 − θ0) + 1

σ 2

T∑
t=1

etx
∗′
t (θ̆1 − θ1)

+ 1

σ 2

T∑
t=1

etH
∗′
[1,l],t (ᾰ[1,l] − α[1,l]) − 1

σ 2

T∑
t=1

etH
∗′
[l+1,k],tα[l+1,k]]

= 1 + E(F1c) + l, (A.39)

which is mols
1K (c, δ, 1, l). Hence, adding the terms in (A.38), we obtain the final result

mols
1 (c, δ, 1, l).� �

Proof of Theorem 4 This result is proved in Theorem 4.1; see (A.30–A.33). �
Proof of Theorem 5 We follow the steps as in the proof of Theorem 4.1. First we derive the explicit forms
of m

gls

1K and m
gls

0K . For l < k (the misspecified case), Lemma A.1 (a)–(d) still holds, and compared to (e) of
Lemma A.1 we now have

T 1/2(α̈[1,l] − α[1,l])
d→ N (0, σ 2Q−1

11 ) + Q−1
11 Q12α[l+1,K] (A.40)

where

Q = E(LtL
′
t ) =

[
Q11[l×l] Q12[l×(K−l)]

Q21[(K−l)×K] Q22[(K−l)×(K−l)]

]
.

For any i ≤ j, define L[i,j ],t = (�ut−i , ..., �ut−j )
′
. Following the steps in proving Theorem 2.1, the forecast

error from the misspecified FGLS model can be expressed as

T
1
2

σ
ê[rT ] = T

1
2

σ
(μ̂[rT ] − μ[rT ])

= A[rT ] + Ḃ[rT ] + C[rT ], (A.41)

where A[rT ] is defined as in (A.14) and

Ḃ[rT ] =
l∑

i=1

T 1/2

σ
(α̈i − αi)�û[rT ]−i = T 1/2

σ
(α̈[1,l] − α[1,l])

′
L̂[1,l],[rT ]

C[rT ] = −
K∑

i=l+1

T 1/2

σ
αi�u[rT ]−i = −T 1/2

σ
α

′
[l+1,K]L[l+1,K],[rT ]. (A.42)

Following the results of Theorem 2.1, Corollary 2.1 and the proof of Theorem 4.1, the cross products
m

gls

1K (c, a, δ, 1, l), m
gls

0K (c, a, δ, 1, l) can be easily derived:

lim
c→−∞

m
gls

1K (c, a, δ, 1, l) = 1 + 1 + l

lim
c→0

m
gls

0K (c, a, δ, 1, l) = 1 + l, (A.43)

which also hold for l > k. The subsequent unbiasedness property can be established in a manner similar to
the proof of Theorem 4.1 and is hence omitted.� �
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APPENDIX B: DETAILED MONTE CARLO RESULTS

This section reports the results of a set of Monte Carlo experiments to assess the adequacy of the asymptotic
approximations in finite samples and evaluate the effectiveness of the proposed approach relative to existing
methods. To facilitate a direct comparison, we adopt the same design as in Hansen (2010). In particular, the

sample size T ∈ {50, 200}, the innovations et

i.i.d∼ N (0, 1), the trend parameters are set at β0 = β1 = 0, and
the true lag order k ∈ {0, 4, 8}. Results are presented for p ∈ {0, 1}.

B.1. Forecast Risk with Known Lag Order

The first two experiments assume knowledge of the true order k, thereby enabling us to delineate the effect
of persistence uncertainty on the forecasts. With reference to equation (2.1), the first data generating process
(DGP) sets α1 = ··· = αk = 0 and varies c from –20 to 0, which implies a range for α of [0.6, 1] for T
= 50 and a range of [0.9, 1] for T = 200. For each parameter configuration, the finite-sample forecast risk
T E[(μ̂T +1 − μT +1)2] is calculated for six estimators: unrestricted FGLS estimator, DFGLS pretest estimator,
and FGLS Mallows averaging estimator, together with their three OLS counterparts. The risk is calculated
using 500,000 Monte Carlo replications.

Figures B1 and B2 present the results for the first DGP for p = 0 and p = 1, respectively. It is clear that
FGLS incurs lower risk than OLS for all three types of estimator: unrestricted, pretest, and averaging. This
suggests that the efficiency gain of using FGLS not only lies in the unrestricted case, but is more broadly
applicable to the pretesting and averaging schemes. Moreover, as in the OLS case illustrated by Hansen
(2010), the FGLS pretest estimator exhibits high risk, and the FGLS Mallows averaging estimator uniformly
dominates the unrestricted FGLS estimator for p = 1. For p = 0, the superiority of the proposed estimator
over unrestricted FGLS estimation is discernible only for c > −5. In terms of comparison with OLS model
averaging, the risk of the proposed estimator is uniformly smaller for p = 1 and nearly uniformly smaller for
p = 0. Overall, our FGLS Mallows averaging estimator performs well and displays the lowest risk among
all estimators for c < −5 when p = 1.

The second DGP sets αj = −( − θ )j for j = 1, ..., k and θ = 0.6. The results are presented in Figures B3
and B4, which exhibit the same overall pattern as observed in Figures B1 and B2, respectively, i.e., the
FGLS estimators dominate their OLS counterparts, and for a large range of c values (around c < −3), the
FGLS averaging estimator has the smallest forecast risk among all estimators when the model includes a
deterministic trend.

B.2. Forecast Risk with Unknown Lag Order

We next consider the situation where the number of autoregressive lags k is unknown. Three types of
estimators are compared: (1) the Mallows selection estimator (denoted as S-OLS/FGLS), which selects

C© 2021 Royal Economic Society.
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Figure B1. Forecast risk of OLS averaging and GLS averaging, p = 0.

unrestricted models from AR(1) through AR(K + 1), i.e., μ̂t (0) through μ̂t (K); (2) the Mallows averaging
estimator (denoted as PA-OLS/FGLS, PA abbreviating partial averaging) that averages over this set of
unrestricted models; (3) the general averaging estimator (denoted as GA-OLS/FGLS), which combines all
models from {μ̂t (l)} and {μ̃t (l)} for l ∈ {0, 1, ..., K}. Again, we set αj = −( − θ )j for j = 1, ..., k and θ =
0.6.
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Figure B2. Forecast risk of OLS averaging and GLS averaging, p = 1.

Figures B5 and B6 present the results for the six forecast methods. All three types of FGLS estimators
uniformly dominate their OLS counterparts. The risk reduction is substantial. Overall, FGLS general
averaging achieves the uniformly lowest risk among all averaging/selection strategies when p = 1 and is
competitive with the best estimator (which turns out to be PA-FGLS for an intermediate range of c values
when T = 200) for each value of c when p = 0. The results are very similar across all K and T.
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Figure B3. Forecast risk of OLS averaging and GLS averaging, p = 0.
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Figure B4. Forecast risk of OLS averaging and GLS averaging, p = 1.
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Figure B5. Forecast risk of general OLS averaging and general GLS averaging, p = 0.
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Figure B6. Forecast risk of general OLS averaging and general GLS averaging, p = 1.
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Table C1. Percentage wins/losses of different forecasting methods, multi-step [h = 6, 12]

h Method S-GLS PA-GLS GA-GLS PT-GLS S-OLS PA-OLS GA-OLS PT-OLS ALL

6 S-GLS 19.51 13.01 49.59 80.49 63.42 39.02 44.72 9.76
PA-GLS 80.49 28.46 62.60 85.37 78.05 53.66 60.16 17.89
GA-GLS 86.99 71.55 69.92 96.75 94.31 75.61 69.92 30.89
PT-GLS 50.41 37.40 30.08 73.17 65.04 50.41 48.78 12.20
S-OLS 19.51 14.63 3.25 26.83 15.45 3.25 22.76 0.00

PA-OLS 36.59 21.95 5.69 34.96 84.55 8.94 33.33 3.25
GA-OLS 60.98 46.34 24.39 49.59 96.75 91.06 47.97 12.20
PT-OLS 55.29 39.84 30.08 51.22 77.24 66.67 52.03 13.82

12 S-GLS 19.51 25.20 59.35 82.93 69.92 54.47 58.54 7.32
PA-GLS 80.49 43.90 66.67 84.55 79.68 65.85 65.85 35.77
GA-GLS 74.80 56.10 78.86 91.06 85.37 82.93 77.24 25.20
PT-GLS 40.65 33.33 21.14 73.17 65.85 51.22 48.78 7.32
S-OLS 17.07 15.45 8.94 26.83 17.07 8.13 28.46 0.81

PA-OLS 30.08 20.33 14.63 34.15 82.93 15.45 33.33 3.25
GA-OLS 45.53 34.15 17.07 48.78 91.87 84.55 47.15 7.32
PT-OLS 41.46 34.15 22.76 51.22 71.55 66.67 52.85 11.38

Note: this table shows the percentage of the 123 series for which a method listed in a row outperforms a method in a
column, as well as all other methods (last column) include the other all in the last column.

APPENDIX C: ADDITIONAL EMPIRICAL RESULTS

This appendix provides additional empirical results pertaining to multi-step forecasts as well as results based
on the data transformed to stationarity as in McCracken and Ng (2016).

C.1. Multi-Step Forecasts

While the focus of our paper is on one-step-ahead forecasts, we also present some empirical results for multi-
step forecasts. These forecasts are obtained iteratively using the simple recursion in step 5 of Algorithm 1.
In particular, the h-step-ahead unrestricted GLS forecast is constructed by iterating on

ŷT +j |T = z′
T +j β̈ + α̈(ŷT +j−1|T − z′

T +j−1β̈) + α̈1(�ŷT +j−1|T − �z′
T +j−1β̈) (C.1)

+ · · · + α̈k(�yT +j−k|T − �z′
T +j−kβ̈)

for j = 1, ..., h, with ŷτ |T = yτ if τ ≤ T . The OLS-based forecasts are constructed similarly (see Hamilton
1994, pp. 80–82). Then the Mallows criteria for the restricted and unrestricted models and the corresponding
weights are obtained as in Sections 3 and 4. For strictly stationary data satisfying certain mixing conditions,
Hansen (2010) suggests an alternative approach based on multi-step cross-validation. While outside the scope
of the present paper, a systematic comparison of the two approaches within the near unit root framework is
an interesting topic for future research.

Tables C1 and C2, which are the analogues of Tables 1 and 2 respectively in the main text, present
the results for 6-month- and 12-month-ahead forecasts. The results in Table C1 show that the GLS-based
methods still dominate the OLS-based methods: GA-GLS stands out as the best for 6-month-ahead forecasts,
and PA-GLS is the best for 12-month-ahead forecasts, although in the latter case, GA-GLS is better than
PA-GLS in terms of pairwise comparison, with the percentage of wins at 56.1%. These results are consistent
with those reported in Table C2, where the GLS-based methods dominate their OLS counterparts for at least
six core macroeconomic series, regardless of the forecast horizon.
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Table C2. Relative MSFE of eight core macroeconomic time series, multi-step [h = 6, 12]

h Industrial Personal Mfg & trade Nonag. CPI Consumption CPI PPI
production income sales employment deflator exc. food

6 S-GLS .960 .969 .967 .864*** 1.030 1.005 .996 .992
PA-GLS .946 .934 .948 .865** .996 .982 .980 .959
GA-GLS .943 .901* .932 .879** .974 .962 .970 .950*

PT-GLS .959 .923 .934 .889** 1.014 1.011 1.020 1.039
S-OLS 1.000 1.051 1.003 .938** 1.020 1.001 .990 .998
PA-OLS .977 .989 .981 .950* .989 .983 .972 .960
GA-OLS .953 .946 .937 .918** .973 .961 .970 .956*

PT-OLS .959 .923 .934 .903** .972 .947 .989 .989
12 S-GLS .900 .891 .922 .829** 1.008 1.015 .966 .960

PA-GLS .888 .869 .899 .822** .980 .989 .961 .945
GA-GLS .891 .834* .888 .848** .966 .971 .954 .946
PT-GLS .967 .840** .925 .871* 1.007 .999 .992 1.018
S-OLS .994 1.039 .994 .951** 1.011 1.015 .978 .990
PA-OLS .964 .959 .959 .955* .980 .989 .956* .954*

GA-OLS .924 .899* .911 .900*** .966 .968 .953 .954
PT-OLS .968 .840** .926 .887* .998 .994 .973 1.023

Note: *denotes 10%, **denotes 5%, and ***denotes 1% significance level for a two-sided Diebold and Mariano (1995)
test. The benchmark is an unrestricted OLS estimation method with 12 lags.

C.2. Forecasts using the McCracken and Ng (2016) Transformation

In this section, we present results for the case where the data are transformed to stationarity according
to the codes provided by McCracken and Ng (2016). The results are reported in Tables C3 and C4. As
suggested by a referee, this set of results includes forecasts obtained by selecting the number of lags using
AIC (labelled S-AIC-GLS and S-AIC-OLS). The results show that our preferred approach based on GLS
averaging continues to dominate OLS-based methods. In contrast, selection from a set of models with
different lags based on AIC underperforms compared with the averaging methods, which applies to both
GLS-based and OLS-based model selection. For multi-step forecasts, PA-GLS dominates the other methods,
which is not unexpected as the benefits of averaging over the unit root restriction are likely to be smaller
when applied to stationary data.

REFERENCES FOR THE APPENDIX
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Table C4. Relative MSFE of eight core macroeconomic time series [McCracken-Ng transformation]

h Industrial Personal Mfg & trade Nonag. CPI Consumption CPI PPI
production income sales employment deflator exc. food

1 S-GLS .969** 1.011 .983 .945*** 1.000 .992 .989 .992
PA-GLS .965** .988 .971** .945*** .975* .971** .972** .971**

GA-GLS .960*** .979 .969** .945*** .979* .975* .975* .973**

PT-GLS .979 1.037* 1.018 .956*** 1.060** 1.036*** 1.026* 1.058**

S-AIC-
GLS

.975* 1.013 .984 .945*** .991 .994 .994 .991

S-OLS .969** 1.009 .984 .949*** 1.008 .993 .989 .993
PA-OLS .965*** .986 .974* .952*** .976** .971** .971** .972**

GA-OLS .961*** .976 .972** .950*** .982* .978* .978** .977**

PT-OLS .977 1.026 1.011 .968** 1.008 .993 .989 .993
S-AIC-
OLS

.968** 1.011 .987 .949*** .995 .996 .993 .994

6 S-GLS .968 1.000 .965* .963** .988 .987 .989 .997
PA-GLS .963 .965 .950** .949** .965** .967*** .967** .964**

GA-GLS .973* .957 .956** .947*** .967** .968*** .968** .964**

PT-GLS 1.026 1.029 .998 .983 1.011 1.007 .999 1.010
S-AIC-
GLS

.976 .986 .967* .963** .984 .984* .990 .998

S-OLS .971 .997 .968* .971** .991 .986 .990 .997
PA-OLS .966* .963 .952** .961** .967** .968*** .969** .965**

GA-OLS .977 .955 .959** .955** .972** .971*** .974** .967**

PT-OLS 1.017 1.029 1.008 .996 .991 .986 .990 .997
S-AIC-
OLS

.972 .983 .970* .971* .985 .984* .990 .999

12 S-GLS 1.000 1.046 .965** .976 .989 .983* .994 .984*

PA-GLS .999 .911 .957** .953** .971** .975** .975* .971**

GA-GLS 1.039 .916 .977 .978 .972** .974** .976* .971**

PT-GLS 1.140** 1.105 1.048 1.047 1.016 1.005 1.014 .998
S-AIC-
GLS

.998 1.031 .967** .976 .988 .979* .998 .981*

S-OLS 1.010 1.064 .971** .982 .995 .986 .998 .986*

PA-OLS 1.000 .916 .961** .963* .975** .975** .978* .971**

GA-OLS 1.049 .896 .984 .992 .974** .975** .977* .973**

PT-OLS 1.106** 1.102 1.036 1.080 .995 .986 .998 .986*

S-AIC-
OLS

1.004 1.051 .971** .975 .993 .984 1.003 .985*

Note: *denotes 10%, **denotes 5%, and ***denotes 1% significance level for a two-sided Diebold and Mariano (1995)
test. The benchmark is an unrestricted OLS estimation method with 12 lags.
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